

SOLVE Subsystem Interface Guide

r12

CA Mainframe Network

Management

This documentation and any related computer software help programs (hereinafter referred to as the

"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,

without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may

not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and

CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,

you may print a reasonable number of copies of the Documentation for internal use by you and your employees in

connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such

software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify

in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT

WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER

OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR

LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and

is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the

restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section

252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2010 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein

belong to their respective companies.

CA Product References

This document references the following CA products:

■ CA NetMaster® File Transfer Management (CA NetMaster FTM)

■ CA NetMaster® Network Automation (CA NetMaster NA)

■ CA NetMaster® Network Management for SNA (CA NetMaster NM for SNA)

■ CA NetMaster® Network Management for TCP/IP (CA NetMaster NM for

TCP/IP)

■ CA SOLVE:Access™ Session Management (CA SOLVE:Access)

■ CA SOLVE:Central™ Service Desk for z/OS (CA SOLVE:Central)

■ CA SOLVE:Operations® Automation (CA SOLVE:Operations Automation)

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the information

you need for your Home Office, Small Business, and Enterprise CA products. At

http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can

send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, complete

our short customer survey, which is also available on the CA Support website,

found at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 9

SOLVE Subsystem Interface .. 9

Products Supported ... 10

Chapter 2: Implementation 11

Deployment .. 11

SOLVE SSI as Common Component .. 12

How You Share a SOLVE SSI Between All Products .. 12

How You Configure a SOLVE SSI for a Product Family 13

Multiple Instances of SOLVE SSI on the Same System ... 13

Chapter 3: Administering the SOLVE SSI 17

Initialization Parameters .. 17

Execute SOLVE SSI Commands .. 22

SSI Command Descriptions .. 23

SMF Command Descriptions ... 24

Packet Analyzer and SOLVE SSI ... 24

Packet Analyzer Parameter Descriptions .. 24

STACK REFRESH Command—Refresh Stack Interface Configuration 28

Use PPI with SOLVE SSI ... 28

Implement PPI .. 29

PPI Parameter Descriptions .. 29

Activate PPI .. 31

PPI Command Descriptions .. 31

Chapter 4: SSI DD SUBSYS Support 33

DD SUBSYS .. 33

SOLVE SSI DD SUBSYS Support ... 34

Enable DD SUBSYS Support in SOLVE SSI .. 34

Considerations When Stopping the SSI ... 35

Use DD SUBSYS .. 35

Implementation of DD SUBSYS .. 36

Who Can Use DD SUBSYS Facilities? ... 37

DD SUBSYS Syntax ... 38

Supported Function Names .. 38

Common Functions .. 39

6 SOLVE Subsystem Interface Guide

Carriage Control .. 42

WTO Facility .. 42

WTO DD SUBSYS Operands .. 42

PPISEND Facility .. 44

PPISEND DD SUBSYS Operands .. 44

PPIRECV Facility .. 46

PPIRECV DD SUBSYS Operands .. 46

USER, USERI, and USERO Facilities .. 48

USERx DD SUBSYS Operands .. 49

FILTER Exit API ... 50

APF Authorization ... 51

Abnormal Termination (ABEND) .. 51

Dynamic Allocation .. 52

Calling Details .. 52

Sample Filter Exit ... 56

USERx Facility API .. 56

APF Authorization ... 57

Abnormal Termination (ABEND) .. 57

Supported I/O Requests ... 58

Dynamic Allocation .. 58

Calling Details .. 59

Sample USER Program Exit .. 65

Sample FILTER Exit: UTIL0037 .. 65

UTIL0037 Processing .. 65

Control File Format .. 66

Sample USER Exit: UTIL0038 .. 69

UTIL0038 Processing .. 69

Chapter 5: Non-VTAM Terminal Support 71

Overview ... 71

Implement Non-VTAM Terminal Support by Using a Local Terminal 71

Sysplex Support .. 72

Enable Terminal Support in SSI .. 72

Specify Accessible Regions ... 73

Attach and Detach Terminals .. 74

Define Terminal Names .. 75

Activate the SSI .. 75

Display Attached Terminals .. 75

Control Non-VTAM Terminals Through Customization Parameters............................. 75

Remote Device System (RDS) Considerations ... 76

Use a Non-VTAM Terminal ... 76

Access a Defined Region ... 77

Contents 7

Use the SYSREQ Key .. 77

Terminate a Session .. 77

Session Status .. 78

Implement Non-VTAM Terminal Support by Using Telnet .. 79

Connect to a Region by Using Telnet ... 79

Index 81

Chapter 1: Introduction 9

Chapter 1: Introduction

This section contains the following topics:

SOLVE Subsystem Interface (see page 9)

Products Supported (see page 10)

SOLVE Subsystem Interface

SOLVE Subsystem Interface is an implementation of IBM’s subsystem

interface (SSI). The interface provides a general-purpose facility that allows

product regions to communicate with other software on a system. It uses an

SSIDB to store information such as business application name definitions for CA

NetMaster NM for TCP/IP. One SOLVE SSI can serve multiple product regions.

SOLVE SSI provides the following facilities:

■ DD SUBSYS

■ Event notification facility (ENF) event listener

■ Inter-SSI communication

■ Packet Analyzer and SmartTrace

■ Program-to-Program Interface (PPI)

■ SMF record intercept

Products Supported

10 SOLVE Subsystem Interface Guide

Products Supported

The SOLVE SSI component provides essential services to the following products:

■ CA Mainframe Network Management product family:

– CA NetMaster FTM

– CA NetMaster NA

– CA NetMaster NM for SNA

– CA NetMaster NM for TCP/IP

■ CA SOLVE:Access

■ CA SOLVE:Central

■ CA SOLVE:Operations Automation product family:

– CA SOLVE:Operations Automation

– CA SOLVE:Operations Automation for CICS

Chapter 2: Implementation 11

Chapter 2: Implementation

This section contains the following topics:

Deployment (see page 11)

SOLVE SSI as Common Component (see page 12)

Multiple Instances of SOLVE SSI on the Same System (see page 13)

Deployment

SOLVE SSI runs as a started task that was built when your product was installed.

The common Install Utility sets up the SOLVE SSI component based on the

products you want the component to serve.

For each region that you want to connect to the SOLVE SSI, the interface ID is

specified in one of the following locations:

■ Sub-System Interface ID field of the SSI parameter group in Customizer

■ SSID JCL parameter in the region’s RUNSYSIN member

Note: For more information about implementing SOLVE SSI, see Installation

Guide.

When you run your product on multiple systems, you set up a SOLVE SSI on each

system. You can set up the SSIs using the following methods:

■ Use the Install Utility to set up each of the SSIs.

■ Use the Install Utility to set up one SSI, and then replicate the generated

data sets such as the SSIDB and SSIPARM.

■ Use the Install Utility to set up one SSI, share data sets such as the

SSIPARM, and replicate the SSIDB.

Note: If you are upgrading a SOLVE SSI, use your existing SSIDB to retain

stored information.

SOLVE SSI as Common Component

12 SOLVE Subsystem Interface Guide

SOLVE SSI as Common Component

The SOLVE SSI is a common component for multiple CA product families and can

serve multiple product regions on a system. The following methods are available:

■ One shared SSI to serve all product families.

■ A separate SSI for each product family (CA Mainframe Network

Management, CA SOLVE:Operations Automation, and CA SOLVE:Access).

■ A mix of the first two methods, for example, CA SOLVE:Access has its own

SSI and CA Mainframe Network Management and CA SOLVE:Operations

Automation share an SSI.

How You Share a SOLVE SSI Between All Products

The Install Utility can help you share a SOLVE SSI between all supported

products on a system. Products are released by families. Usually, when a product

family is released, the release comes with an updated version of the SSI. When

you share the SSI, use the latest version. The following process guides you in

sharing an SSI:

1. Use the Install Utility that comes with the latest release to set up your SSI.

a. If there is an existing SSI, use the existing subsystem identifier for the

new SSI.

b. Select the products you want the new SSI to serve.

c. Complete the setup.

2. Replace the existing SSI with the new SSI. Because you use the same

subsystem identifier for the new SSI, product regions that require an SSI

connect to the new SSI seamlessly.

Multiple Instances of SOLVE SSI on the Same System

Chapter 2: Implementation 13

How You Configure a SOLVE SSI for a Product Family

If you use a separate SOLVE SSI for each family, you can potentially run up to

three instances of the SSI on the same system. Some SSI initialization

parameters are restricted to be set only once on a system. The Install Utility can

help you set up an SSI for each product family, but the utility can potentially

specify a restricted parameter in more than one SSI. You review the parameter

members to remove the conflict.

You set up an SSI for a product family by using the Install Utility that comes with

that family. In the following example, you have a system that is running CA

SOLVE:Operations Automation but has no CA Mainframe Network Management

products. You want to add CA NetMaster NM for TCP/IP to the system.

1. Use the Install Utility that comes with CA NetMaster NM for TCP/IP to set up

a separate SSI.

a. Select CA NetMaster NM for TCP/IP as the product you want the SSI to

serve.

b. Complete the setup.

2. Review the parameter members for the two SSIs for CA SOLVE:Operations

Automation and CA NetMaster NM for TCP/IP. Referring to the Multiple

Instances of SOLVE SSI on the Same System (see page 13) topic, you notice

that both SSIs specify the restricted UNIX and XEVNT parameters. Because

CA SOLVE:Operations Automation is using an earlier version of SSI, remove

those parameters from the member for that SSI.

You configure the two SSIs to run without conflict on the same system.

Multiple Instances of SOLVE SSI on the Same System

Multiple instances of the SOLVE SSI component can run on the same system.

These instances can include SSIs at different gen levels. For example, if you run

products from different families on the same system, you can set up a different

SSI for each family.

When you use the Install Utility to set up the SSIs, the default configuration

enables the SSIs to communicate with each other (initialization parameter

XCF=YES (see page 21)). The multiple SSIs works as a logical SSI. A product

region connected to one SSI has access to the facilities in the other SSIs.

Multiple Instances of SOLVE SSI on the Same System

14 SOLVE Subsystem Interface Guide

Some SSI initialization parameters can be set only once within the logical SSI;

otherwise, failures can occur. If you plan to run multiple SSIs on the same

system, ensure that the following parameters, if necessary, are set in one SSI

only:

■ IPSECNMI=YES (see page 19)

■ PAEESTACK=stack_job_name (see page 25)

■ PKTANALYZER=YES (see page 28)

■ PPI=YES (see page 29)

■ SMF=YES (see page 20)

■ SNANMI=YES (see page 20)

■ UNIX=YES (see page 21)

■ XEVNT=YES (see page 21)

The following table provides a matrix that helps you identify the important

parameters required within a logical SSI for the products running on a system.

Where possible, include the parameters in the SSI at the latest gen level.

Table legend: FTM (CA NetMaster FTM), NA (CA NetMaster NA), SNA (CA

NetMaster NM for SNA), TCP/IP (CA NetMaster NM for TCP/IP), SO (CA

SOLVE:Operations Automation), SOCICS (CA SOLVE:Operations Automation for

CICS), and SC (CA SOLVE:Central)

FTM NA SNA TCP/IP SO SOCICS SC

IPSECNMI N/A N/A N/A NO/YES N/A N/A N/A

PAEESTACK N/A N/A N/A stack_job_name N/A N/A N/A

PASMFWRITE YES N/A N/A YES N/A N/A N/A

PKTANALYZER N/A N/A N/A YES N/A N/A N/A

PPI N/A N/A N/A N/A N/A YES NO/YES

SMF YES N/A N/A YES N/A N/A N/A

SNANMI N/A N/A N/A YES N/A N/A N/A

UNIX YES N/A N/A YES YES YES N/A

XEVNT YES YES YES YES YES YES N/A

Note: CA SOLVE:Access requires no special parameters, except the standard

XCF=YES.

Multiple Instances of SOLVE SSI on the Same System

Chapter 2: Implementation 15

Note: CA NetMaster FTM uses the NMFTP Monitor SSI, which shares the

initialization parameters with the SOLVE SSI. When you use the Install Utility to

set up the NMFTP Monitor SSI, the correct parameters are configured. The

NMFTP Monitor SSI has IPSMFAPIREC=YES, which is mutually exclusive with the

UNIX parameter in the same SSI.

Chapter 3: Administering the SOLVE SSI 17

Chapter 3: Administering the SOLVE SSI

This section contains the following topics:

Initialization Parameters (see page 17)

Execute SOLVE SSI Commands (see page 22)

Packet Analyzer and SOLVE SSI (see page 24)

Use PPI with SOLVE SSI (see page 28)

Initialization Parameters

SOLVE SSI has various initialization parameters. These control important

execution options and facilities.

The initialization parameters are specified in the SSIPARM(SSISYSIN) or

SSIPARM(SSIPARMS) (if used) member created during region setup as described

in Installation Guide. To review the initialization parameters and to add further

initialization parameters, open this member.

Note: Parameters can be specified more than once. The last specification is

used.

Note: Packet Analyzer and the PPI facility provide several additional parameters.

ABENDCODE={ 4095 | n }

Assigns an alternate user ABEND code for SOLVE SSI internal ABENDs.

Default: 4095

Limits: 1 to 4095

ABENDMSG={ NO | YES }

Specifies whether SSI service ESTAE exits write WTO messages if an ABEND

is detected. You can use this parameter to find external interface errors, for

example, PPI RC 90.

ADDSSID={ YES | NO }

Specifies whether the SSID is defined automatically if an SSID is not found

when SOLVE SSI starts. If YES is specified, the SSID is defined automatically.

If NO is specified, the SSID must be defined manually in the

SYS1.PARMLIB(IEFSSNxx) member.

Initialization Parameters

18 SOLVE Subsystem Interface Guide

ARM={ NO | YES }

Specifies whether the SOLVE SSI region registers with the Automatic Restart

Manager (ARM). If NO is specified, the region does not register with ARM. If

YES is specified, the SOLVE SSI region attempts to register with ARM. If the

registration fails, an error message is written to the SSILOG but the region

starts.

ARMNAME=elementname

Overrides the default ARM element name. The default is SVS_sysnamessid

where sysname is the system name and ssid is the ID of the SOLVE SSI

region. ARM requires a unique element name for each SYSPLEX.

BLIP={ NO | n }

Specifies the wake-up interval, which prevents S322 time-outs of the

subsystem job. This parameter can be important in a testing environment if

SOLVE SSI is running as a batch job. If NO is specified, no wake-up timer is

set.

Default: NO

Limits: Valid values of n are 1 to 60 minutes.

CDI={ YES | NO }

Specifies whether to enable or disable the Configuration Data Interface (CDI)

facility. The facility is an EPS server that accepts requests for and obtains

TCP/IP stack configuration data from IBM's Communications Server. CA

NetMaster NM for TCP/IP uses this facility.

Default: YES

DAE={ NO | YES }

Specifies whether SOLVE SSI sets the DAE indicator to ON when requesting

an SDUMP. This parameter enables these dumps for DAE processing. Use

this parameter to stop duplicate Supervisor Call (SVC) dumps.

Default: NO

Note: Current releases of z/OS perform DAE processing regardless of the

setting of this parameter.

DDSUBSYS={ NO | YES }

Specifies whether SOLVE SSI provides services needed by the DD SUBSYS

facility.

If you are using the DD SUBSYS facility, specify YES.

Default: NO

Initialization Parameters

Chapter 3: Administering the SOLVE SSI 19

ENF={ NO | YES }

Controls the setup of the z/OS ENF listener during SSI initialization. If NO is

specified, no listener is inserted. If YES is specified, then an ENF listener is

inserted and the ENF interface is activated.

Default: NO

ENFADD=n

Activates the nominated ENF code. If n does not correspond to a recognized

ENF code that SOLVE SSI handles, then a warning message is produced

during startup. This parameter can be repeated, as necessary.

The valid ENF codes and their initial status are documented in IBM's z/OS

Authorized Assembler Programming Guide.

Limits: n must be in the range 1 through 255.

ENFDEL=n

Deactivates the nominated ENF code. If n does not correspond to a

recognized ENF code that SOLVE SSI handles, then a warning message is

produced during startup. This parameter can be repeated, as necessary.

Limits: n must be in the range 1 through 255.

ENFARMWTO={ NO | YES }

Activates the old WTO messages that earlier versions of the ENF interface

issued for ARM events.

Default: NO

IPSECNMI={ NO | YES }

Specifies whether to enable the IPSec network management interface (NMI)

facility. If multiple SOLVE SSIs are active on a system, only one of these SSIs

can have the facility enabled.

Default: NO

IPSMFAPIREC={ NO | YES }

Specifies whether to exploit the SMF API (or Network Management Interface

API).

Notes:

■ This parameter and the UNIX parameter are mutually exclusive. You can

set only one to YES in any SSI.

■ For CA NetMaster FTM, this parameter is set to YES in the NMFTP Monitor

parameter member during setup if you use an IBM TCP/IP stack.

Initialization Parameters

20 SOLVE Subsystem Interface Guide

PROMPT={ YES | NO }

Specifies whether a message is written (WTO) to the system operator if the

supplied SSID is not found or is unusable. If YES is specified, the operator

has a chance to specify a new SSID, request a retry, or end the SSI. If NO is

specified, and the SSID is not usable, the SSI is immediately terminated.

SDUMP={ NO | YES }

Specifies whether SOLVE SSI writes a dump to a SYS1.DUMP data set when

an ABEND occurs.

The default is NO, and the dump is written in accordance with the JCL (for

example, SYSUDUMP or SYSMDUMP).

Specifying YES suppresses any dump specifications (such as SYSUDUMP) in

the JCL (except as noted), and forces a dump to a SYS1.DUMP data set. The

dump includes symptom strings that aid analysis.

Note: The formatted dump (SSIDUMP) is still written. In some cases, a

system dump (for example, a CANCEL DUMP operator command) is written

to a JCL-specified location (such as SYSUDUMP) before SOLVE SSI has a

chance to suppress it. Therefore, it is recommended that the SYSUDUMP,

SYSMDUMP, and SYSABEND statements be removed from the SOLVESSI

JCL.

SMF={ NO | YES }

Specifies whether support for SMF record intercept is enabled. You can

enable this support in only one SSI per system.

Note: Set this parameter to YES for the following products only:

■ CA NetMaster NM for TCP/IP

■ CA NetMaster FTM

Important! SMF record type 119 must be defined in the stack configuration.

For more information, see CA NetMaster Network Management for TCP/IP

Installation Guide.

SMFREPLACE={ NO | YES }

Specifies whether SMF exits are reloaded when SMF=YES. By default (NO),

the SSI reloads an exit only if it is newer than the currently loaded one. If you

specify YES, the SSI reloads the exits every time the SSI starts up.

Important! The SSI loads the exits into common storage. Specifying YES

can lead to a depletion of the common storage under abnormal

circumstances. Therefore, in a production environment, do not specify YES

unless there are other considerations (for example, intermittent execution of

a back-level SSI).

Initialization Parameters

Chapter 3: Administering the SOLVE SSI 21

SNANMI={ YES | NO }

Enables and disables the SNA network monitoring. The SNANMI facility can

be enabled in only one active SOLVE SSI region.

Default: NO

SOLVEJOB={ * | jobname }

Specifies the job names of the regions that can connect to SOLVE SSI. If * is

specified, no restriction is placed on the regions that can connect to SOLVE

SSI. jobname specifies the name of a region running under that job name

that can connect to SOLVE SSI (it must be a valid z/OS job name). This

parameter can be specified up to 16 times to nominate the regions that can

connect to SOLVE SSI at once.

SSID={ * | name }

Specifies the subsystem ID (SSID) that this invocation of the SSI is to use.

Note: You do not need to define the SSID explicitly. The SSID can be defined

automatically.

Limits: If an asterisk (*) is specified (the default), the first four characters of

the SSI job name are used. If name is used, it must be a valid one- to

four-character name. The first character must be alphabetic or national and

the remainder alphanumeric or national.

STATS={ NO | n }

Specifies the interval at which a SHOW SSISTATS command is issued. The

output of this command is routed to the SOLVE SSI log only. This can be

useful for following trends in SOLVE SSI usage. If NO is specified, no STATS

timer is set.

Limits: n can be 1 to 60 minutes.

UNIX={ NO | YES }

Specifies whether to enable the UNIX System Services (USS) shell interface.

If you set this parameter to YES, and your operating system cannot access

USS for some reason, then you receive a warning message, but the task

starts successfully.

If you have multiple SOLVE SSIs active on a system, then set up the USS

shell interface in one SOLVE SSI only. For the other SOLVE SSIs, specify NO.

XCF={ NO | YES }

Enables the SOLVE SSI region to communicate with other SSI regions by

using XCF. If YES is specified, the SOLVE SSI region attempts to register with

XCF using the group name and member name.

Execute SOLVE SSI Commands

22 SOLVE Subsystem Interface Guide

XCFGROUP=groupname

Overrides the default XCF group name that SOLVE SSI uses when registering

with XCF.

Default: ZSOLVE01

XCFMEMBER=membername

Overrides the default XCF member name that SOLVE SSI uses when

registering with XCF.

Default: sysnamessid

XEVNT={ NO | YES }

Specifies whether to include Simple One Shot Event Sender support. Only

one SSI started task per z/OS system can have YES specified.

XMS={ * | NO | YES }

Specifies whether SOLVE SSI sets up and uses a cross-memory environment

for external interfaces (for example, PPI). The following values can be

specified:

*

Uses XMS if supported by the operating system. This means that z/OS

uses XMS by default.

NO

Prevents use of cross-memory services. Several SSI facilities will not

work.

YES

Uses XMS, but an error occurs if the environment does not support XMS.

Default: *

Execute SOLVE SSI Commands

SOLVE SSI provides several commands that can be used for control and to

display statistics. These commands can be issued from the following locations:

■ From any system console. Command responses are delivered to the issuing

console.

■ Any suitably authorized user ID on the connected region. Command

responses are delivered to the issuer.

■ Internally. The STATS=n parameter internally issues a command in the SSI

itself. The output of this command is routed to the SSI log only.

Execute SOLVE SSI Commands

Chapter 3: Administering the SOLVE SSI 23

SSI Command Descriptions

The following commands are provided:

SHOW SSIEPS

Displays information about EPS connections and end points as seen from this

SSI region. The following operands are supported:

DETAIL

Displays additional information about each end point.

LINKS

Displays a list of direct links to other end points.

TOPOLOGY

Displays a topology of all links between all end points.

NOTIFY

Displays a list of notifier end points for each link in the topology display.

STATS

Displays additional statistics lines.

SHOW SSISTATS

Displays statistics about internal SSI pools. This command is useful for

tuning and debugging.

SHOW SSIUSERS

Displays a list of all signed-on SSI environments. The list shows the terminal

(or console), user ID, and type.

SSI SIGNOFF

Terminates the current command/message environment. This is useful for

preventing further receipt of unsolicited SSI messages after issuing some

SSI commands.

SSI STATUS

Displays the status of the SSI. The display includes the version number and

PUT level.

SSI STOP

Stops the SSI. This command causes the job to terminate. This command

cannot be issued during initialization. A default command authority of 4 is

assigned to this command.

Note: These are basic SOLVE SSI commands only. PPI (see page 31) and SMF

(see page 24) support add some additional commands.

Packet Analyzer and SOLVE SSI

24 SOLVE Subsystem Interface Guide

SMF Command Descriptions

The following SMF-related commands let you control and inquire about the SMF

processing performed by your product. The commands are available only for the

copy of the SOLVE SSI that has been started using the SMF=YES parameter,

which activates SMF support.

SMF STATUS

Displays current status of SMF processing, status of each SMF exit, and

common code component.

SMF DEREGISTER

Deregisters SMF exits, functionally deactivating SMF processing by your

product

SMF REGISTER

Registers SMF exits and reactivates SMF processing by your product.

Note: Deregistering and then registering the SMF exits refreshes the exit code.

Packet Analyzer and SOLVE SSI

Note: This section only applies to CA NetMaster NM for TCP/IP and CA NetMaster

FTM.

Packet Analyzer intercepts packets inbound and outbound for your stacks, and

stores the connection information and general statistics (for example, byte and

packet counts) in the SOLVE SSI. It also intercepts SMF records generated by

stacks, and File Transfer Protocol (FTP) and Telnet servers to augment the

connection information. It depends on having a SOLVE SSI task running.

Packet Analyzer Parameter Descriptions

Before you activate Packet Analyzer, you can specify its parameters in the

SSIPARM(SSISYSIN) or SSIPARM(SSIPARMS) (if used) member created during

setup.

Packet Analyzer and SOLVE SSI

Chapter 3: Administering the SOLVE SSI 25

PACCMINT={ time_interval | NO }

Specifies whether you want to monitor changes in the configuration of the

stacks and the time interval used to scan for any changes.

time_interval

Specifies the scan interval (in seconds) to use to monitor changes in

stack configuration.

Default: 30

Limits: 5 to 600

NO

Specifies that changes in stack configuration are not monitored.

PADSWTPCT={ dynamic_database_threshold | NO }

Specifies a percentage threshold to trigger messages to warn users of the

dynamic database becoming full. NO disables the warnings.

Default: 80

Limits: 50 to 95 or NO

PAEESTACK={ stack_job_name | NONE }

Specifies the job name of the stack that VTAM uses for EE traffic. Setting the

value to NONE disables EE packet processing.

Default: None

PAEXMODE={ TASK | ZIIP | BEST }

Specifies whether to move processing performed by the Packet Analyzer

from the central processor (CP) to a z/Series Integrated Information

Processor (zIIP):

■ TASK executes the Packet Analyzer in Task mode on the CP.

■ ZIIP executes the Packet Analyzer in SRB mode and makes the workload

eligible for dispatching on a zIIP, where available.

■ BEST executes the Packet Analyzer in SRB mode and makes the

workload eligible for dispatching on a zIIP, where available (that is, as if

PAEXMODE=ZIIP is specified). If no zIIP is available, BEST uses Task

mode (that is, as if PAEXMODE=TASK is specified). Unlike

PAEXMODE=ZIIP, no error occurs if no zIIPs are available.

Default: TASK

Packet Analyzer and SOLVE SSI

26 SOLVE Subsystem Interface Guide

PALEVEL={ FULL | NOSTATS | NOPACKETS | NONE }

Specifies the processing level of Packet Analyzer:

■ FULL enables all Packet Analyzer functions.

■ NOSTATS enables packet processing and tracing, but keeps no statistics.

■ NOPACKETS disables packet processing and tracing.

■ NONE disables Packet Analyzer (same as PKTANALYZER=NO).

Default: FULL

PAMAXULPORT=high_port_number

Specifies the highest local User Datagram Protocol (UDP) port number for

which packet statistics are kept. Increasing it can cause the Packet Analyzer

database to increase in size.

Default: 1024

Limits: 512 to 65535

PAMITTSIZE=packet_trace_size

Limits the number of packets you can specify for the size of the initial packet

trace table in a multiple Transmission Control Protocol (TCP) connection

trace definition.

Default: 100

Limits: 10 to 999

PAMMTTSIZE=main_trace_size

Limits the number of packets you can specify for the size of the main trace

table in a trace definition.

Defaults: 20000

Limits: 10 to 99999

PAMFZKPTIME=ended_trace_retain_time

Limits the number of minutes you can specify in a trace definition to retain an

ended trace.

Default: 1440 (one day)

Limits: 1 to 10080 (seven days)

PAMSSKPTIME=snapshot_trace_retain_time

Specifies the number of minutes to retain the snapshot of a running trace.

Default: 1440 (one day)

Limits: 1 to 10080 (seven days)

Packet Analyzer and SOLVE SSI

Chapter 3: Administering the SOLVE SSI 27

PAMTCCCRLIM=number_tcp_traces

Limits the number of TCP conversation traces (per stack) you can specify for

a trace definition. 0 specifies no limit.

Default: 999

Limits: 0 to 9999

PASMFWRITE={ YES | NO }

Specifies whether SMF records can be requested to be written by SMF exits

when SMF=YES.

Note: The TCP/IP application name definitions can override this value,

subject to the actions of other SMF exits of the same type that are executed

later.

PASSWTPCT={ synchronous_database_threshold | NO }

Specifies a percentage threshold to trigger messages to warn users of the

synchronous database becoming full.

Default: 80

Limits: 50 to 95 or NO

PATSWTPCT={ trace_database_threshold | NO }

Specifies a percentage threshold to trigger messages to warn users of the

trace database becoming full.

Default: 80

Limits: 50 to 95 or NO

PDCPDSSIZE={ n | 1024 }

Specifies the size of the Packet Analyzer decoupler in MB.

Default: 1024

Limits: n must be in the range 8 through 1024.

PDCPSGSIZE={ n | 256 }

Specifies the size of the Packet Analyzer decoupler segments in KB.

Default: 256

Limits: n must be in the range 68 through 1024.

PDYNDBSIZE={ n | 64 }

Specifies the size of the Packet Analyzer dynamic database in MB.

Default: 64

Limits: n must be in the range 8 through 1024.

Use PPI with SOLVE SSI

28 SOLVE Subsystem Interface Guide

PKTANALYZER={ NO | YES }

Specifies whether Packet Analyzer is enabled. You can enable Packet

Analyzer in only one SSI per system.

Note: Set this parameter to YES for the following products only:

■ CA NetMaster NM for TCP/IP

■ CA NetMaster FTM

PSYNDBSIZE={ n | 12 }

Specifies the size of the Packet Analyzer synchronous database in MB.

Limits: n must be in the range 4 through 256.

Default: 12

PTRCDBSIZE={ n | 64 }

Specifies the size of the Packet Analyzer trace database in MB.

Default: 64

Limits: n must be in the range 8 through 1024.

STACK REFRESH Command—Refresh Stack Interface Configuration

The STACK REFRESH command refreshes the stack interface configuration for

any changes (for example, when an interface is added or removed).

Use PPI with SOLVE SSI

PPI provides a general-purpose facility for programs, written in any language, to

exchange data. It also provides a facility for any program to forward a generic

alert to NetView or a region. The SOLVE SSI implementation closely follows the

IBM implementation. Therefore, programs written to run with the IBM

implementation work with the SOLVE SSI implementation with no changes. No

special authorization is required to use the PPI and it does not depend on having

NetView or a SOLVE SSI running.

Use PPI with SOLVE SSI

Chapter 3: Administering the SOLVE SSI 29

Implement PPI

PPI is implemented by SOLVE SSI, allowing it to run regardless of the status of

the region. This is important because applications may need to queue data across

the PPI even if the region itself is not active.

The region can use PPI regardless of whether it is being provided by SOLVE SSI

or NetView. The region need not have a connected SOLVE SSI and the connected

SOLVE SSI need not be the PPI owner to use the facilities of PPI.

Note: Only the region connected to the PPI-owning SOLVE SSI can register

receiver IDs that start with NETV or NETM.

When the region is initialized, it issues a conditional load for CNMNETV. If

CNMNETV is found, then PPI facilities are available.

PPI Parameter Descriptions

Before you activate PPI, you specify its parameters in the SSISYSIN or

SSIPARMS (if used) member. The following parameters are recognized:

PPI={ YES | NO }

Indicates whether this SOLVE SSI is to provide PPI services (YES) or not

(NO).

Note: Only one SSI can provide the interface.

Default: No

PPIFREELIM={ 25 | nnnn }

Specifies the maximum number of pages (each 4 KB) of storage that are

retained in the PPI data buffer free storage pool. Buffers longer than

approximately 4,060 bytes are not allocated out of this pool.

The buffer-free storage pool is initially empty. Storage is obtained from the

system as required, and, as data buffers are received, their storage is

returned to the pool. If the number of free pages in the pool then exceeds

this limit, the excess pages are freed to the system. The pool reduces

overheads by eliminating most GETMAIN/FREEMAIN activity.

Limits: 10 to 1,000 pages

Default: 25 pages (100 KB)

Use PPI with SOLVE SSI

30 SOLVE Subsystem Interface Guide

PPIINATO={ n | NO | 5 }

Specifies the number of minutes that must elapse before a SHOW PPIUSERS

command without the INACT operand hides inactive PPI users with nothing

queued to them.

Limits: 0 to 1,440, or NO. Zero or NO indicates no time-out

Default: 5

PPIMAXQB={ 100000 | nnnnn }

Specifies the largest value allowed for the PPI receiver queue limit. Larger

values are rejected.

Limits: 1000 to 1,000,000. The lowest limit that a PPI receiver can have is 0.

PPIMAXBL={ 65536 | nnnnn }

Specifies the largest data buffer size that can be queued to a PPI receiver.

This parameter allows the setting of a reasonable limit.

Limits: 1,000 to 1,000,000

PPINETMR={ YES | NO }

PPINETVR={ YES | NO }

Specifies whether only the connected main task can define PPI receiver

names starting with NETM or NETV.

Default: YES, meaning that the associated name is restricted.

PPINPREF={ * | xxxx }

Specifies the PPI name service prefix value. An asterisk (*) uses the SOLVE

SSI SSID; otherwise, this value must be a one- to four-character name

consisting of alpha, numeric, or national characters only. We recommend a

value the same as the SOLVE SSI-connected domain ID as specified in the

NMDID JCL parameter.

PPIRC90T={ YES | NO }

Controls the writing (WTO) of additional debugging messages from PPI

whenever a PPI return code 90 is returned on a PPI application program

interface (API) call.

PPIREUSE=n

Specifies the number of PPIINATO intervals that must elapse before an

inactive PPI receiver with nothing queued, that was a PPI-supplied name

(function 60), is purged. The name becomes available for reassignment.

Use PPI with SOLVE SSI

Chapter 3: Administering the SOLVE SSI 31

Activate PPI

PPI is activated using the JCL parameter PPI=YES | NO, which is specified in the

SSISYSIN or SSIPARMS (if used) member. If PPI is set to YES, then SSI attempts

to activate PPI when SOLVE SSI initializes.

If PPI is not activated, then check the following:

■ Whether another SOLVE SSI owns the PPI. Only one SOLVE SSI can provide

PPI services at a time.

■ That SOLVE SSI can build the required control block structure to support PPI.

PPI Command Descriptions

The following commands are available or have extended function when PPI is

active:

SHOW PPIUSERS [=name | =prefix*] [INACT]

Displays a list, in receiver ID order, of all defined PPI receivers. The display

includes statistics on buffer counts and storage. If active, the owning job

name and ASID are displayed.

SHOW SSISTATS

If PPI is active, additional statistics on PPI are displayed. This includes the

number of receivers and statistics on the PPI buffer storage pool.

Chapter 4: SSI DD SUBSYS Support 33

Chapter 4: SSI DD SUBSYS Support

This section contains the following topics:

DD SUBSYS (see page 33)

SOLVE SSI DD SUBSYS Support (see page 34)

Enable DD SUBSYS Support in SOLVE SSI (see page 34)

Use DD SUBSYS (see page 35)

WTO Facility (see page 42)

PPISEND Facility (see page 44)

PPIRECV Facility (see page 46)

USER, USERI, and USERO Facilities (see page 48)

FILTER Exit API (see page 50)

USERx Facility API (see page 56)

Sample FILTER Exit: UTIL0037 (see page 65)

Sample USER Exit: UTIL0038 (see page 69)

DD SUBSYS

Note: Support for DD SUBSYS is available on MSP and z/OS systems only.

DD SUBSYS is a facility (provided by the system) that allows an authorized

subsystem to provide access methods to existing programs. In effect, the

subsystem appears to these programs as if it is a set of files, and in this way is

able to provide data to, or receive data from, the programs.

For example, assume that you have a third-party program that writes an event

log while it is running. The information in this event log could be very useful for

system automation. Normally, however, the data written to this log cannot be

accessed by another program until the program producing the log is shut down.

DD SUBSYS allows you to intercept all data written to the file while logging is

taking place. You can then use the WTO facility to send the data to operator

terminals. The Advanced Operations Management (AOM) software then forwards

the data to any specified NCL process in the region.

SOLVE SSI DD SUBSYS Support

34 SOLVE Subsystem Interface Guide

SOLVE SSI DD SUBSYS Support

The SOLVE SSI support for DD SUBSYS provides the following facilities:

■ The ability to generate WTO output records.

■ The ability to send output records to a nominated PPI receiver.

■ The ability to act as a PPI receiver and to pass incoming records to a program

as an input file.

■ The ability to provide a general user function where a user-nominated

program can be called to process I/O.

In addition, all the supplied facilities support the following functions:

■ The ability to copy the data records to another data definition.

■ The ability to call a user-written filter program that can determine whether

individual records are to be accepted or rejected.

Enable DD SUBSYS Support in SOLVE SSI

To use the DD SUBSYS support provided by SOLVE SSI, you must enable it.

To enable the use of DD SUBSYS with SOLVE SSI, use the following startup

parameter:

DDSUBSYS={ NO | YES }

The following example enables SSI for DD SUBSYS:

//DDSUBSYS EXEC PGM=NMSSI,TIME=1440,

// PARM=('SSID=xxxx,DDSUBSYS=YES')

//SSILOG DD SYSOUT=*

//SSIDUMP DD SYSOUT=*

//SYSUCUMP DD SYSOUT=*

The SSID used for this SSI should have been specified in the IEFSSNxx or

SUBSYSxx member in SYS1.PARMLIB during the installation and setup of SOLVE

SSI.

You can start an SSI as a started task or as a job.

Use DD SUBSYS

Chapter 4: SSI DD SUBSYS Support 35

Considerations When Stopping the SSI

You can stop the SSI by using the following system operator command:

F job-name,SSI STOP

However, you should not stop or restart the SSI while using it to find DD

SUBSYS—JCL errors, because allocation errors can occur.

Also, open errors can occur if you stop the SSI after a job has started but before

it opens a DD SUBSYS data set. These errors cause OPEN ABENDs (013-C0) that

can crash the user program.

Finally, if you stop the SSI while a DD SUBSYS data set is open, the next I/O

request to that data set ABENDs with a U0001 ABEND code. This is preceded by

the following message, which is sent as a WTO message to the system console:

NS4199 ACCESS ERROR on ddname

Restarting the SSI does not prevent ABENDs or errors from occurring in jobs that

are active but dormant. Jobs that require the SSI that has been stopped (and

restarted) for DD SUBSYS do not automatically use the restarted SSI.

Subsequent SSI requests from those jobs can fail because the original SSI has

stopped. Restart those jobs to use the new SSI.

Most of these restrictions are due to operating system limitations.

Use DD SUBSYS

This section describes how to use DD SUBSYS in general terms. You may also

want to refer to the MVS JCL Reference manual for further JCL considerations,

and the MVS Programming: Authorized Assembler Services Guide for details of

the Dynamic Allocation interfaces.

Use DD SUBSYS

36 SOLVE Subsystem Interface Guide

Implementation of DD SUBSYS

While implementing the DD SUBSYS facility, you should consider the following:

■ An extra operand on the JCL DD statement lets you nominate the name of a

subsystem that is to process the I/O requests of this file.

This is the SUBSYS operand and is used as follows:

//ddname DD SUBSYS=(parm1,parm2...parmn)

This operand tells the operating system that the nominated subsystem is to

process this file.

Note: If individual parameters of the SUBSYS operand contain special

characters, including equals signs (=), then the subparameter must be

enclosed in quotes. The quotes are removed before the parameter is passed

to the subsystem.

■ Equivalent facilities to the DD SUBSYS operand are available when using

dynamic allocation. Two text units can be used, as follows:

DALSSNM X'005F'

Specifies the subsystem name (corresponding to the first subparameter of

the SUBSYS operand in JCL).

DALSSPRM X'0060'

Specifies subsystem parameters (corresponding to the additional

subparameters of the SUBSYS operand in JCL).

Note: Since each subparameter passed in the text unit has a length, the

previous comments regarding quotes in the JCL parameter do not apply.

■ The SSI provides several function codes that must be supported by a

subsystem to allow it to use DD SUBSYS.

These function codes and their purpose are shown in the following table:

Function

Code

Purpose

07 Unallocation (UN)—called at job step end or by dynamic

deallocation of the file.

16 Open (OP)—called when the file is opened.

17 Close (CL)—called when the file is closed.

38 Converter/interpreter (CI) called when JCL is parsed (not

used for dynamic allocation).

39 Allocation group (AG)—called at job step allocation or

dynamic allocation time.

Use DD SUBSYS

Chapter 4: SSI DD SUBSYS Support 37

■ The subsystem must also provide a set of routines that receive control

whenever a program that has opened a DD SUBSYS file issues an I/O request

to it. These routines get control as a logical subroutine called by the user

program and must simulate the processing of normal I/O requests. How

these routines provide data to the user program (for input) or data from the

user program (for output) is up to you.

■ DD SUBSYS interface routines in your operating system translates all

DCB-based I/O requests to an ACB/RPL-based interface for the subsystem.

This is the normal mode of operation. If the subsystem is coded with

appropriate logic, it can handle an application program that opens an ACB to

DD SUBSYS. In this case the subsystem could simulate VSAM.

Who Can Use DD SUBSYS Facilities?

Any job in the same operating system as the providing subsystem can use the DD

SUBSYS facilities. There is no requirement for the user of DD SUBSYS facilities to

be in the same region as the subsystem itself. Of course, a specific

implementation of DD SUBSYS may impose restrictions. The SOLVE SSI

implementation does not impose any restrictions.

An implementation of DD SUBSYS may not support some types of file or I/O. For

example, the SOLVE SSI implementation discussed here provides two functions

(WTO and PPISEND) that are applicable to output files only. If you attempt to

open these files for input the operation fails.

Similarly, some subsystems may not be able to simulate enough VSAM

information for a program to open an ACB directly to the subsystem.

To use DD SUBSYS, the providing subsystem must be active; otherwise, you get

JCL errors or ALLOCATION and OPEN statements fail.

Use DD SUBSYS

38 SOLVE Subsystem Interface Guide

DD SUBSYS Syntax

All supplied functions of the SOLVE SSI DD SUBSYS facility use the following

syntax:

//ddname DD SUBSYS=(ssid,function[,'keyword=value',...])

ssid

Specifies the SOLVE SSI SSID.

function

A supported function name. This must be the second subparameter.

keyword=value

Specifies one or more functions or general parameters. Each parameter is a

keyword-value pair. Due to JCL requirements, you must use quote marks,

because there are special characters to specify, such as the equals sign (=).

The parameter names depend on the specific function.

When using dynamic allocation, the subparameters are provided as

individual length/value pairs on the DALSSPRM text unit. In this case, there

is no need to quote the parameter values.

Supported Function Names

The following function names are supported:

WTO

Invokes the WTO facility that allows output records to be sent to the system

console through the WTO macro.

PPISEND

Invokes the PPI SEND function that sends output records through PPI to any

PPI receiver.

PPIRECV

Invokes the PPI RECEIVE function that allows records sent to the nominated

PPI receiver name to be fed to a program as input.

USER or USERI or USERO

Invokes the USER facilities that allow a user-specified program to be driven

to process input or output records.

Use DD SUBSYS

Chapter 4: SSI DD SUBSYS Support 39

Common Functions

There are two additional facilities available when using SOLVE SSI DD SUBSYS

functions. These facilities enable the copying of data to another file and the

filtering of data through a user exit program.

COPY Facility

The COPY facility lets you copy the DD SUBSYS file records (input or output) to

another file.

This lets you see and process a data flow while using DD SUBSYS and sending the

data to its original destination, for example:

//LOG DD SUBSYS=(NMSS,WTO,'COPY=LOG2')

//LOG2 DD SYSOUT=A

‘COPY=ddname’

ddname

Specifies the target data definition name. There are special DCB attribute

defaulting rules. You can override these by using a DCB parameter on the

target COPY ddname.

Use DD SUBSYS

40 SOLVE Subsystem Interface Guide

The rules are as follows:

■ If the DCB has no RECFM specified, then the attributes are forced to

RECFM=U, LRECL=0, and BLKSIZE=6233; however:

– If RECFM is U and BLKSIZE is specified, then the specified BLKSIZE is

used.

– If RECFM is U and no BLKSIZE is specified, then BLKSIZE=6233 is set.

■ If LRECL=0, and:

– If the RECFM is FB, then LRECL=132 is set, or LRECL=133 if the RECFM

has A or M. If B (Blocked), LRECL*40 is set as the BLKSIZE, otherwise

the BLKSIZE is set to the LRECL.

– If the RECFM is VB, then LRECL=136 is set, or LRECL=137 if the RECFM

has A or M. If B (Blocked), 6233 is set as the BLKSIZE, else the BLKSIZE

is set to the LRECL+4.

■ If BLKSIZE=0, and:

– If the RECFM is U, BLKSIZE=6233 is set.

– If the RECFM is F, BLKSIZE=LRECL is set.

– If the RECFM is FB, a BLKSIZE that is the largest integral multiple of the

LRECL less than 6233 is set. Otherwise, the value of the LRECL is used, if

it is greater than 6233.

– If the RECFM is V, BLKSIZE=LRECL+4 is set.

– If the RECFM is VB, BLKSIZE=6233 is set (if LRECL is less than 3110),

otherwise BLKSIZE=LRECL+4 is set.

You can cascade DD SUBSYS statements; the DD statement for the ddname

specified for one COPY operand can itself be a DD SUBSYS definition. This can

allow several facilities to see output from a program.

Note: The order in which the FILTER and COPY statements are used on a single

DD SUBSYS statement is important. If the FILTER operand precedes the COPY

operand, then the COPY facility copies only records that were not rejected by the

filter exit. If the FILTER operand follows the COPY operand, all records are

copied, regardless of the result of the filtering process.

If the COPY file has an I/O error or an ABEND, the application program abends.

Use DD SUBSYS

Chapter 4: SSI DD SUBSYS Support 41

FILTER Facility

The FILTER facility calls a user exit program to determine whether each

individual record is to be passed on for processing.

If processing an output file, for example, for PPISEND, you can use the FILTER

facility to prevent a record from being sent.

If processing an input file, you can use the FILTER facility to prevent a record

from being passed to the user program.

Additionally, if the COPY facility is also being used on the same DD statement,

filtering may affect the copy facility.

The syntax of the FILTER operand on DD SUBSYS is:

‘FILTER=pgmname’

‘FILTER=(pgmname)’

‘FILTER=(pgmname,)’

‘FILTER=(pgmname,parm)’

Note: Due to JCL requirements, you must use quote marks when specifying the

FILTER operand, because it contains special characters. (Quoting is not

necessary, however, if you are using dynamic allocation.)

FILTER

Can intermingle with other DD SUBSYS subparameters, although there is an

interaction between it and the COPY parameter.

pgmname

Specifies the name of a user exit program. This program is loaded during

OPEN processing for the file. It is then called to open the file, once for each

GET or PUT of a logical record, and to close the file.

parm

(Optional) If specified, it must be a one-character to eight-character value, in

PDSNAME format. It is passed to the user filter exit. The exit can use it as, for

example, a data definition name (ddname) of a control file.

Note: If using both the FILTER and COPY facilities on a single DD SUBSYS

statement, the order is important. If the FILTER operand precedes the COPY

operand, the COPY facility copies only records that were not rejected by the filter

exit. If the FILTER operand follows the COPY operand, all records are copied

regardless of the result of the filtering process.

If the FILTER program abends while processing a FILTER request, the application

program also abends.

WTO Facility

42 SOLVE Subsystem Interface Guide

Carriage Control

When an output data set has carriage control specified (that is, the RECFM has A

or M in it), the following special considerations apply:

■ The ACB/RPL interface does not normally provide the control character as

part of the record. Rather, the control character is pointed to separately.

Because of this, SOLVE SSI DD SUBSYS support normalizes the record.

■ When using facilities such as PPISEND or WTO, you probably do not want to

send the control character. These facilities default to not sending it, but this

can be overridden.

■ The COPY facility always copies the entire record, including the control

character.

■ The FILTER facility user exit is passed the entire record, including the control

character, and is notified of its existence so that it can take appropriate

processing steps.

WTO Facility

The WTO facility provided by SOLVE SSI lets you send records that are written to

a file as WTO messages. This allows the messages to be viewed by an operator,

and picked up by an automation product.

Note: Use the WTO facility sparingly; otherwise, you can fill up console buffers

and crash the system.

A logical record can have an optional prefix added to the front, then the total

record is truncated to 126 characters before being sent as a WTO message.

WTO DD SUBSYS Operands

The following are the DD SUBSYS operands for the WTO function:

Note: Other than for the WTO name itself, the order of the operands is not

important.

WTO

Specifies the WTO function and must be the first subparameter after the

subsystem name.

WTO Facility

Chapter 4: SSI DD SUBSYS Support 43

'ROUTCDE=(list)'

Specifies an optional list of routing codes to apply to the WTO messages. If

this operand is omitted, ROUTCDE=11 is assumed. Quote marks are

required.

Limits: The list of routing codes can be a single number (in which case, no

parentheses are necessary) or a list of numbers from 1 through 16 (MSP) or

1 through 128 (z/OS).

Note: If using routing codes greater than 20, authorization is required.

Unauthorized programs cannot issue WTO messages using these routing

codes and, if they do, an ABEND D23 results.

'DESC=(list)'

Specifies an optional list of descriptor codes to apply to the WTO messages.

If this operand is omitted, DESC=7 is assumed. Syntax is as for ROUTCDE,

values range from 1 through 16.

Note: It is not advisable to use descriptor codes 1, 2, or 11, as these

messages will stay on the consoles.

'PREFIX=value'

Allows for the specification of an optional WTO prefix. If this operand is

omitted, the SSID is used (but you can force the prefix to be dropped by

coding PREFIX=NO). Otherwise, you can specify a 1-character to

12-character prefix value. There must be a single blank between the prefix

and the text of the message.

'BASE=n'

Controls the starting column number for the data that is sent as a WTO

message. The value of n must be a number from 1 through 32760. It is a

logical column number. The default value is 1 if the file does not have

carriage control; otherwise, it defaults to 2. This means that a print file will

not normally have carriage control characters in the WTO text. BASE can also

be used to skip a record prefix, and so on.

'COPY=ddname'

'FILTER=parms'

Allow for copying and filtering of data.

Notes:

You need to consider the following:

■ A null record after BASE considerations is ignored.

■ Routing codes above 16 are not supported unless the operating system is

z/OS.

■ The FILTER facility is especially useful here to limit the amount of data sent to

the consoles.

PPISEND Facility

44 SOLVE Subsystem Interface Guide

PPISEND Facility

The PPISEND facility provided by SOLVE SSI lets you send logical records written

to a file to any PPI receiver. The receiver can be, for example, an NCL process in

a region. It can also be any user program that uses the PPI API.

PPISEND DD SUBSYS Operands

The following are the DD SUBSYS operands for the PPISEND function:

Note: Other than for the PPISEND name itself, the order of the operands is not

important:

PPISEND

Specifies the PPISEND function and must be the first subparameter after the

subsystem name.

'TARGET=targetid'

Nominates the identifier of the PPI receiver. targetid must be a valid PPI

receiver name. The name must be defined to PPI at the time the data set is

opened (although the PPI need not be active). This operand is required.

'SOURCE=sourceid'

Provides an optional PPI sender ID. This must be a valid PPI name, but is not

registered to PPI. As well as a valid name, the following special names are

supported:

*JOB

Use the job name.

*STEP

Use the job step name. If the job step name does not exist, use the job

name.

*PSTEP

Use the procedure step name. If the procedure step name does not exist,

use the step name. If the step name does not exist, use the job name.

Default: *JOB

PPISEND Facility

Chapter 4: SSI DD SUBSYS Support 45

'QFULL=option'

Controls the action to take if the PPISEND receives a PPI queue full condition

(PPI return code 35). The following actions can be specified:

ERROR

Specifies that a Dataset Full condition be reflected to the application

program with an RPL error of 28 (X'1C'). If the application is using a DCB

(as is normally the case), then this is reflected as an I/O error (not an

X37 ABEND).

IGNORE

Specifies that the queue full return code be ignored. This means that the

record is not sent; however, processing continues. Note that, if you are

using the COPY facility, the COPY is still performed.

Default: ERROR

'BASE=n'

Controls the starting column number for the data that is sent to PPI. n must

be a number from 1 through 32760. It is a logical column number.

Default: 1, if the file does not have carriage control; otherwise, it defaults to

2. This means that a print file will not normally have carriage control

characters sent across PPI. BASE can also be used to skip a record prefix, and

so on.

'COPY=ddname'

'FILTER=parms'

Allow for copying and filtering of data.

PPIRECV Facility

46 SOLVE Subsystem Interface Guide

Notes:

You need to consider the following:

■ The targetid and sourceid values are validated at JCL syntax check time. If

they are invalid then a JCL error occurs. This syntax check is repeated at step

allocation time.

■ When the data set is opened, PPI is called to check that the receiver exists. If

PPI is inactive, or if the receiver is not defined, then the open fails. This leads

to an 013-C0 OPEN ABEND occurring for a DCB. For an ACB, an ACB open

error code is set. Messages are written informing of the problem. Any other

unexpected PPI return codes also cause an open error.

■ The data set must be open for output, otherwise the open fails.

■ When records are written to the data set, a PPI SEND is issued for each

logical record. Any return code other than 0 (All OK), or 4 (Inactive But

Queued) results in an I/O error. The return code of 35 (Receiver Queue Full)

is translated into an RPL error code of 28 (X‘1C’)—data set Full, for

ACB/RPL-based callers (if QFULL=ERROR is in effect; otherwise, it is

ignored).

■ The PPI receiver receives the logical records (with no prefix, even if the user

program is writing V or VB), exactly as sent, or as adjusted by the BASE

value. The receiver can use the sender ID to determine where the records

came from.

■ No null record (not even one that is logically null after considering the BASE

value) is sent.

PPIRECV Facility

The PPIRECV facility provided by SOLVE SSI lets you receive data from other PPI

senders and to provide the received data as an input file. The senders can be any

other PPI users, including NCL processes in a region. They can also be any

program that uses the PPI API.

PPIRECV DD SUBSYS Operands

The following DD SUBSYS operands are required or optional with the PPIRECV

function:

Note: Other than for the PPIRECV name itself, the order of the operands is not

important:

PPIRECV

Specifies the PPIRECV function and must be the first subparameter after the

subsystem name.

PPIRECV Facility

Chapter 4: SSI DD SUBSYS Support 47

'ID=name'

Nominates the PPI receiver name. name must be a valid PPI receiver name.

The name must not be defined to PPI at the time the data set is opened or, if

defined, must not be active. This operand is required.

'APF=option'

Allows you to specify whether or not PPI senders must be APF authorized to

send to this name.

NO

Specifies that senders do not need APF authorization.

YES

Specifies that senders must be APF authorized.

Default: NO

'IQEMPTY=option'

'QEMPTY=option'

Specifies the action to take when a PPI Queue Empty return code (30) is

returned. The two operands allow a different action to be taken for the initial

read request (IQEMPTY), and for all subsequent read requests (QEMPTY).

The following actions can be specified:

EOF

Specifies that an end-of-file is returned to the application. This is the

default for QEMPTY.

WAIT (WAIT)

Specifies that an indefinite wait is performed until data is queued.

(WAIT,n)

Specifies that a wait for an interval of n seconds is performed. n is in the

range 1 through 86400. If no data arrives in this interval, an end-of-file

is returned.

Default: WAIT

'MAXQUEUE=n'

Specifies the PPI receiver buffer queue limit. The value of n must be in the

range 1 through 9999.

Default: 10.

USER, USERI, and USERO Facilities

48 SOLVE Subsystem Interface Guide

'COPY=ddname'

'FILTER=parms'

Allow for copying and filtering of data.

Note: Because PPIRECV is an input facility, the filtering is performed on

records received from PPI, before being returned to the application as input

records.

Notes:

You need to consider the following:

■ If the program opens the file as RECFM=F or FB, short input records are

padded with blanks to the LRECL.

■ Records that are too long cause an I/O error.

■ Use of IQEMPTY and QEMPTY can allow you to set up a job to wait indefinitely

for initial input, then process input until no more arrives in a certain time,

then return EOF and terminate.

■ If you are filtering, you may not get a return on input for several wait

intervals. This is because, if the filter program rejects the input record, the

wait is re-executed.

USER, USERI, and USERO Facilities

The USERx facilities let you supply your own DD SUBSYS I/O routines. This is an

open-ended facility. If one of the supplied functions does not allow you to do

what you want to do, then you can use the USERx facilities to implement it.

Full details on the API for the user program are provided as well as a sample.

USER, USERI, and USERO Facilities

Chapter 4: SSI DD SUBSYS Support 49

USERx DD SUBSYS Operands

The following DD SUBSYS operands are used with the USERx function:

Note: Other than for the USERx name itself, the order of the operands is not

significant.

USER

USERI

USERO

Specifies the user function to be performed and must be the first

subparameter after the subsystem name.

USER

Enables the user program to handle most data set options. The only

option that is blocked by the SOLVE SSI front-end is the use of ASY mode

I/O.

USERI

Enables the user program to handle sequential input only. This is the

most common type of input processing and removes the need for the

user program to validate ACB and RPL options.

USERO

Enables the user program to handle sequential output only. This is the

most common type of output processing and removes the need for the

user program to validate ACB and RPL options.

'PGM=pgmname'

Names the user program. pgmname must be a valid program name. The

program must be available for loading at OPEN time (for example, in the

STEPLIB or link list).

The user program need not be APF-authorized, unless the application

opening the file is APF-authorized, in which case the user program must

come from an APF-authorized library. The PGM operand is required.

'PARM=parm'

Provides an optional one-character to eight-character parameter to be

passed to the user program. If specified, the value must be in a valid

partitioned data set (PDS) name format. If omitted, an 8-character value of

all blanks is used.

FILTER Exit API

50 SOLVE Subsystem Interface Guide

'COPY=ddname'

'FILTER=parms'

Enables the copying and filtering of data.

If the file is being written to, filtering and copying occur before the user

program is called. Records rejected by filtering are not passed to the USER

program.

If the file is being read, filtering and copying are performed on the records

provided by the USER program. If the filter program rejects a record, the

user program is called to provide another one.

Note: A sample user program is provided in source form (UTIL0038 (see

page 69)).

FILTER Exit API

This section describes the supplied API that lets you write a filtering program.

The filter program can be used to select which records that are written to or read

from a DD SUBSYS facility are actually processed (written records), or returned

to the requester (records read).

The filter program can be written in any language that supports standard linkage

conventions. However, for performance reasons, it is probably best written in

assembler.

The sample filter program that is supplied contains extensive comments.

FILTER Exit API

Chapter 4: SSI DD SUBSYS Support 51

APF Authorization

The use of DD SUBSYS could provide an opportunity to circumvent system

security. This is because the exit programs run during OPEN and CLOSE

processing, and normally the system is in supervisor state or has a protection

key set (to less than 8) at these times.

Consequently, the following rules are implemented:

■ If the application program (that is, the job step program) is not APF

authorized, then the filter exit need not be APF authorized, and need not

reside in an APF-authorized library. Although it can be APF authorized, and

can reside in an APF-authorized library, the APF authorization is ignored.

■ If the application program is APF authorized, then the filter exit must come

from an APF-authorized library, although the exit need not be APF authorized

itself. Since APF libraries are normally security protected, this prevents a

potentially dangerous filter program from being loaded and executed in an

environment where APF authorization exists.

Note: Specifying any unauthorized step libraries results in all step libraries

being considered not authorized for that step.

■ The OPEN and CLOSE calls to the filter exit are made in the job step TCB key

and state.

■ The FILTER calls to the filter exit are made directly from the application, thus

the system state and key at this time is dependent on the application.

The above rules mean that a simple application can use a filter program without

any need to access APF libraries, and so on. Only when using authorized

applications is there any need to place the filter program in an APF library.

Abnormal Termination (ABEND)

If the filter program abends during an OPEN or CLOSE call, the ABEND is trapped

by the DD SUBSYS code and is reflected as an OPEN error (during an OPEN), or

is ignored (during a CLOSE).

If the filter program abends during a FILTER call, the ABEND is reflected by the

application (as the filter program is merely being called as a subroutine of the

application program). For this reason, you should ensure that the filter program

is well tested before placing it in a production environment.

FILTER Exit API

52 SOLVE Subsystem Interface Guide

Dynamic Allocation

While the user program can open its own files at any time (including during an

OPEN and a CLOSE call), it cannot make Dynamic Allocation requests during

OPEN or CLOSE calls. This is because a system ENQ is held, and a call to Dynamic

Allocation results in an error.

Thus, the user program should have any required files pre-allocated in the JCL

before an OPEN is performed on the DD SUBSYS file.

Calling Details

The filter program is called with registers set up as follows:

Register Content

R0 Indeterminate.

R1 Points to a parameter list, as described below.

R2...R12 Indeterminate.

R13 Points to a standard 18-word save area.

R14 Contains the return address and AMODE.

R15 Contains the entry point and filter exit AMODE.

In a 31-bit environment, the filter exit is called in the AMODE, as established by

the linkage editor. It need not return in the AMODE specified in register 14 on

entry (that is, it can use a BR R14 instruction to return), because the return

address is guaranteed to be below the line. The caller of the filter exit restores its

own AMODE.

For the OPEN and CLOSE calls, the PSW key and state is as for the job step

program (normally key 8, problem state).

For the FILTER calls, the PSW key and state is as for the application program at

the time it issued the I/O request. This is normally key 8, problem state.

On completion, the filter program must restore registers 2 through 12 to the

values they had when the filter program started processing.

FILTER Exit API

Chapter 4: SSI DD SUBSYS Support 53

Return Codes

The filter exit sets a return code in register 15 to reflect the results of its

processing.

Setting a non-zero value for the OPEN call means that the attempted opening of

the data set failed. An optional error message can be supplied in this case.

The return code for the CLOSE call is ignored.

A non-zero return code for the FILTER call means that the current record is to be

rejected.

Reentrancy

The filter exit need not be written to be reentrant. However, if the same filter exit

is to be used for more than one DD SUBSYS filter in a single job step, it is a good

idea to make it reentrant. This is because each OPEN will cause a separate

non-reentrant copy to be loaded. However, at CLOSE time, there is no way to tell

the system which copy is to be deleted. This means that an active copy of the exit

could be deleted instead of the one that has been closed.

Parameter List

The parameter list for the filter exit is provided by the Assembler macro

$NMDDSFP. The following are described:

■ The individual fields in the parameter list, including the name of the pointer

in the parameter list

■ The target field

Note: The parameter list is pointed to by register 1 on entry to the filter exit.

Many of the parameters are in storage and cannot be altered by the filter exit.

FPLS@FC

A pointer to a binary full word that contains a function code. The function

code determines what processing is required. Valid function code values are:

0-OPEN CALL

4-CLOSE CALL

8-FILTER CALL

FPLS@DDN

A pointer to the eight-character, blank padded ddname for the file being

filtered. This ddname is in protected storage and cannot be altered.

FILTER Exit API

54 SOLVE Subsystem Interface Guide

FPLS@PRM

A pointer to the eight-character, blank padded parameter value specified as

the filter (for example: 'FILTER=(MYPGM,MYPARM)' would result in the

parameter being CL8'MYPARM'). If no value is specified, then the field is

blank.

This parameter value is in protected storage and cannot be altered.

Note: If a value is specified, it is edited to be a valid ddname (or PDS

member name). This means that no editing is required if you want to use it as

a ddname or member name (although obviously you need to test for the

existence of the ddname or member name).

FPLS@JFC

A pointer to the Job File Control Block (JFCB) for the file. This control block

contains various useful fields, such as the DSNAME (assuming one was

specified along with the SUBSYS parameter; otherwise a system-generated

name is provided).

The IEFJFCBN mapping macro maps this control block. The JFCB is in

protected storage.

FPLS@UWD

A pointer to a four-byte, aligned area, initialized to binary zeros prior to the

OPEN call. You can update this value. The updated value is then passed to

subsequent FILTER calls and to the CLOSE call. If the value is further

updated, then the new value is passed on subsequent calls.

An excellent use for this field is to anchor a work/save area that you obtain

on the OPEN call. This makes it very easy to make the filter program fully

reentrant.

Note: If a non-zero return code results from the OPEN call (that is, the OPEN

fails), then the program is not called again. In this case, any work areas

obtained should also be freed, as the CLOSE call is unable to free them later.

FILTER Exit API

Chapter 4: SSI DD SUBSYS Support 55

FPLS@FLG

A pointer to a one-byte flag, in protected storage. This flag contains several

useful equated bits (the equates are in $NMDDSFP):

FFLG1OIN X'80'

The file is open for input.

FFLG1OOT X'40'

The file is open for output (FFLG1OIN can also be set).

FFLG1OUP X'20'

The file is open for update (both FFLG1OIN and FFLG1OOT are set).

FFLG1CCH X'01'

The file is open for output and there are control characters present (that

is, the original data set had A or M in the RECFM).

FPLS@LEN

A pointer to a length field.

■ For the OPEN call, it points to a full word in protected storage that has the

value F'120'-this is the length of the supplied error message return area.

■ For the CLOSE call, it points to a full word in protected storage that has

the value F'0'.

■ For the FILTER call, it points to a full word that contains the length of the

record that is to be filtered. Note that this value is not in protected

storage, but that altering it will not have any effect on other processing.

FPLS@REC

A pointer to the record area.

■ For the OPEN call, it points to a 120-byte, blanked area. This area can be

used to return an error message when you return a non-zero return code

to fail the open. In this case, if the area is not blank, the message is sent

through WTO to inform of the open failure reason.

■ For the CLOSE call, it points to a full word F'0' in protected storage.

■ For the FILTER call, it points to the record to be filtered. This record must

not be altered. There is no guarantee that you will be able to access

storage past the length pointed to by FPLS@LEN.

The record starts with the control character, if one is present.

FPLS@ACB

A pointer to the ACB for the file. On OPEN, this ACB is a copy in protected

storage. On CLOSE and FILTER, this is the real ACB. It must not be altered.

USERx Facility API

56 SOLVE Subsystem Interface Guide

FPLS@RPL

A pointer to the RPL for the I/O request. For OPEN and CLOSE, it points to a

dummy full word 0 in protected storage. For I/O, it points to the real RPL.

Because the record address, length, handle control character prefixing, and

LOCATE mode are provided, there should be little need to actually refer to

the RPL.

The parameter list provides all the information that is needed to perform record

filtering.

Sample Filter Exit

A sample filter exit, UTIL0037 (see page 65), is supplied in source form. It

illustrates the use of the filter parameters to provide a general-purpose filter

facility.

USERx Facility API

This section describes the API that lets you write your own DD SUBSYS I/O

handler.

The user program can be used to replace any DD SUBSYS function with your own

code. Some suggestions are:

■ Reformatting files for programs that cannot be rewritten

■ Encryption and decryption of data without intermediate files

■ Real-time monitoring of messages

The user program can be written in any language that supports standard linkage

conventions. However, for performance reasons, it is best written in assembler.

The user program includes extensive comments.

USERx Facility API

Chapter 4: SSI DD SUBSYS Support 57

APF Authorization

The use of DD SUBSYS could provide an opportunity to circumvent system

security. This is because the user programs run during OPEN and CLOSE

processing, and normally the system is in supervisor state or has a protection

key set (to less than 8) at these times.

To avoid security exposure, the following rules are implemented:

■ If the application program (that is, the job step program) is not APF

authorized, then the user program need not be APF authorized, and need not

reside in an APF-authorized library. Although it can be APF authorized, and

can reside in an APF-authorized library, the APF authorization is ignored.

■ If the application program is APF authorized, then the user program must

come from an APF authorized library, although the program need not be

APF-authorized itself. Since APF libraries are normally security protected,

this prevents a dangerous user program from being loaded and executed in

an environment where APF authorization exists.

Note: Specifying any unauthorized step libraries results in all step libraries

being considered not authorized for that step.

■ The OPEN and CLOSE calls to the user program are made in the job step TCB

key and state.

■ The I/O calls to the user program are made directly from the application,

thus the system state and key at the time is dependent on the application.

The above rules mean that a simple application can use a user program without

any need to access APF libraries, and so on. Only when using authorized

applications is there any need to place the filter program in an APF library.

Abnormal Termination (ABEND)

If the user program abends during an OPEN or CLOSE call, the ABEND is trapped

by the DD SUBSYS code and reflected as an OPEN error (during an OPEN call), or

is ignored (during a CLOSE call).

If the user program abends during an I/O call, the ABEND is reflected by the

application (as the user program is merely being called as a subroutine of the

application program). For this reason, ensure that the user program is well

tested before placing it in a production environment.

USERx Facility API

58 SOLVE Subsystem Interface Guide

Supported I/O Requests

The USERx facilities allow most I/O requests to be processed. The restrictions are

as follows:

■ For the USER option, any Open mode is allowed. The only I/O option that is

not allowed is ASY (asynchronous).

■ For the USERI option, Open For Input Only is allowed. The only I/O request

that is permitted is for synchronous input.

■ For the USERO option, Open For Output is required. The only I/O request that

is permitted is for synchronous output.

■ The DD SUBSYS code always checks and disallows illogical conditions such as

PUTLOCATE (not allowed by VSAM).

■ The API hides most details of the ACB/RPL interface. Only the USER option

needs to examine the ACB and RPL. USERI and USERO are protected from

most things, including the use of GETLOCATE.

Dynamic Allocation

While the user program can open its own files, and so on, at any time (including

during the OPEN and CLOSE calls), it cannot make dynamic allocation requests

during OPEN or CLOSE calls. This is because a system ENQ is held and calling

dynamic allocation results in an error.

Thus, the user program should have any required files pre-allocated in the JCL

before an OPEN is performed on the DD SUBSYS file.

USERx Facility API

Chapter 4: SSI DD SUBSYS Support 59

Calling Details

The user program is called with registers set up as follows:

Register Content

R0 Indeterminate.

R1 Points to a parameter list, as described below.

R2...R12 Indeterminate.

R13 Points to a standard 18-word save area.

R14 Contains the return address and AMODE.

R15 Contains the entry point and filter exit AMODE.

In a 31-bit environment, the user program is called in the AMODE, as established

by the linkage editor. It need not return in the AMODE specified in R14 on entry

(that is, it can just use a BR R14 instruction to return), because the return

address is guaranteed to be below the line. The caller of the user program

restores its own AMODE.

■ For the OPEN and CLOSE calls, the PSW key and state is as for the job step

program (normally key 8, problem state).

■ For the I/O calls, the PSW key and state is as for the application program at

the time it issued the I/O request. This is normally key 8, problem state.

On completion, the user program must restore registers 2 through 12 to the

values they had when the user program started processing.

Return Codes

The user program reflects its processing by setting a return code in register 15.

Setting a non-zero value for the OPEN call means that the OPEN of the data set

failed. An optional error message can be supplied in this case.

The return code is ignored for the CLOSE call.

A non-zero return code for the I/O call causes an RPL logical error code to be set,

unless the user program has already set a return error code. This means that you

should normally return R15 = 0.

USERx Facility API

60 SOLVE Subsystem Interface Guide

Reentrancy

The user program need not be written to be reentrant. However, if the same user

program is to be used for more than one DD SUBSYS file in a single job step, it is

a very good idea to make it reentrant. This is because each OPEN causes a

separate, non-reentrant copy to be loaded. However, at CLOSE time, there is no

way to tell the system which copy is to be deleted. This means that a still active

copy of the program could be deleted, instead of the one that has been closed.

Parameter List

The Assembler macro $NMDDSFP provides the parameter list for the filter exit.

The following are described:

■ The individual fields in the parameter list, including the name of the pointer

in the parameter list

■ The target field

Note: The parameter list is pointed to by register 1 on entry to the filter exit.

Many of the parameters are in storage and cannot be altered by the filter exit.

UPLS@FC

A pointer to a binary fullword that contains a function code. The function code

determines what processing is required. The function code values are:

0-OPEN call

4-CLOSE call

8-I/O call (see UPLS@IOF)

UPLS@DDN

A pointer to the eight-character, blank-padded ddname for the file being

processed. This ddname is in protected storage and cannot be altered.

UPLS@PRM

A pointer to the eight-character, blank-padded parameter value supplied as

the value for the PARM operand (for example, 'PGM=MYPGM',

'PARM=MYPARM', would result in the parameter being CL8'MYPARM '). If no

value is supplied, then the field is blank.

Note: If a value is supplied, it is edited to be a valid ddname (or PDS member

name). This means that no editing is required if you want to use it as a

ddname or member name (although obviously you need to test for ddname

or member name existence).

This parameter is in protected storage and cannot be altered.

USERx Facility API

Chapter 4: SSI DD SUBSYS Support 61

UPLS@NME

A pointer to the eight-character, blank-padded USERx name. The value is

USER, USERI, or USERO. By checking this value on OPEN, you can ensure

that the I/O calls are made only for expected values (for example, if the

value is USERI, we guarantee that only synchronous GET requests are

allowed).

If you allow the value USER, you need to be prepared to handle any I/O

request type (particularly if the application opens an ACB as if it were a VSAM

file).

UPLS@UWD

A pointer to a four-byte, aligned area, initialized to binary zeros before the

OPEN call. You can update this value. The updated value is then supplied to

subsequent I/O calls and to the CLOSE call. If the value is further updated,

then the new value is supplied on subsequent calls.

An excellent use for this field is to anchor a work/save area that you obtain

on the OPEN call. This use makes it easy to make the USER program fully

reentrant.

Note: If a nonzero return code results from the OPEN call (that is, the OPEN

fails), then the program is not called again. In this case, any work areas

obtained should also be freed, as the CLOSE call is unable to free them later.

UPLS@FLG

A pointer to a 1-byte flag that is in protected storage. This flag contains

several useful equated bits (the equates are in $NMDDSUP):

UFLG1OIN X'80'

The file is open for INPUT.

UFLG1OOT X'40'

The file is open for OUTPUT (UFLG1OIN can also be set).

UFLG1OUP X'20'

The file is open for UPDATE (both UFLG1OIN and UFLG1OOT are set).

UFLG1FIX x'02'

The data set records are fixed length.

UFLG1CCH X'01'

The file is open for output and there are control characters present (that

is, the original data set had A or M in the RECFM).

USERx Facility API

62 SOLVE Subsystem Interface Guide

UPLS@RLN

A pointer to a binary halfword (two bytes long) that contains the maximum

record length. This is the record length as defined on OPEN and is data only.

When UFLG1FIX is on, this value is useful for determining the correct record

length to return for GET requests to prevent I/O errors.

This field is in protected storage and cannot be altered.

UPLS@IOF

A pointer to the I/O function code for I/O calls only (points to a dummy

fullword 0 for OPEN/CLOSE). The values of this function code are re-equated

in the IFGRPL Assembler macro for the RPLREQ field. The field is a binary

fullword.

To avoid the need for USERI and USERO programs to refer to the IFGRPL

macro, the GET and PUT equates are defined in the $NMDDSUP macro:

RPLGET X'00000000' (UPLSFGET)

RPLPUT X'00000001' (UPLSFPUT)

UPLS@IOA

A pointer to an I/O area.

■ For OPEN, points to a 120-byte blank-padded error message area. You

can set an error message here for output if you fail the OPEN call.

■ For CLOSE, points to a fullword 0 in protected storage (cannot be written

to).

■ For I/O (GET/PUT requests only for the USER program), points to an I/O

area. This area might or might not be the actual user I/O area, but this is

not significant. A work I/O area is supplied in the case of GET LOCATE.

■ For other I/O requests (other than GET/PUT), it points to a fullword 0 in

protected storage.

USERx Facility API

Chapter 4: SSI DD SUBSYS Support 63

UPLS@IOL

A pointer to the length field for I/O.

■ For OPEN, points to a fullword with the value 120 (the length of the error

message area) in protected storage.

■ For CLOSE, points to a fullword 0 in protected storage.

■ For PUT I/O requests, points to a fullword that contains the length of the

record being output.

■ For GET I/O requests, points to a fullword containing the length of the

I/O area. You must update this fullword to be the actual length of the

record that you are providing.

Note: You do not need to make any special considerations for GET

LOCATE, as a dummy record area is supplied in this case.

■ For other I/O requests (USER only), points to a fullword 0 in protected

storage.

UPLS@ERF

A pointer to a 2-byte error return field for I/O procedures.

■ For OPEN and CLOSE, points to a fullword 0 in protected storage.

■ For I/O, points to a 2-byte field that is initialized to binary zeros. This

field is where you can return RPL error codes as required. If no errors are

to be returned, then these fields can be ignored.

The first byte must be set to X'08' for a logical error, or X'0C' for a physical

error.

The second byte must be set to the reason code. For example, if you are

returning a logical error (X'08'), you could set X'04' for EOF (input) or X'1C'

for data set full (output).

If you set a nonzero value in the first byte other than 08 or 0C, or set a

nonzero value in the second byte and leave byte 1 zero, then the interface

routines force an error code of X'08' with reason code X'DA'.

Note: If you want the RPL error fields to be set directly, you leave these

fields set to zero.

UPLS@DSN

A pointer to the 44-character data set name (dsname).

This name is the dsname specified in the DD SUBSYS statement or a

system-generated name if you did not specify a dsname. This field is in

protected storage and cannot be altered.

USERx Facility API

64 SOLVE Subsystem Interface Guide

UPLS@ACB

A pointer to the ACB for the file.

■ For OPEN, this ACB is a copy in protected storage.

■ For CLOSE and I/O, this is the real ACB. The value must not be altered.

Note: If the application program opened a DCB, this ACB is the dummy one

built by the SAMSII routines.

If you want to map the ACB, the appropriate Assembler macro is IFGACB.

UPLS@DEB

A pointer to the DEB for the file.

This is a dummy DEB as built for DD SUBSYS files. The value is in protected

storage and cannot be altered. The IEZDEB Assembler macro maps this

control block.

UPLS@JFC

A pointer to the Job File Control Block (JFCB) for the file. This control block

contains various useful fields, such as DSNAME (assuming that one was

specified with the SUBSYS parameter; otherwise, a system-generated name

is supplied).

The IEFJFCBN Assembler mapping macro maps this control block. The JFCB

is in protected storage.

UPLS@SOB

For OPEN and CLOSE, points to the SSOB for the OPEN (SSOBFUNC=16) and

CLOSE (SSOBFUNC=17) calls.

The SSOB can be used to locate other SSI control blocks. These control

blocks are all in protected storage. The IEFJSSOB DA Assembler macro can

be used to obtain the SSOB and OPEN/CLOSE extension maps.

For I/O, the pointer is a zero (that is, it points to nothing).

UPLS@RPL

A pointer to the RPL for the I/O request.

■ For OPEN and CLOSE, points to a dummy fullword 0 in protected storage.

■ For I/O, points to the real RPL. Because the record address and length

are provided, and control character prefixing and LOCATE mode (and so

on) are handled automatically, there is little requirement to refer to the

RPL.

USER programs can refer to the RPL for exotic option flags, KEY pointers, and

so on.

The IFGRPL Assembler macro maps this control block.

Note: The parameter list provides all the information that is required to perform

your own I/O processing.

Sample FILTER Exit: UTIL0037

Chapter 4: SSI DD SUBSYS Support 65

Sample USER Program Exit

A sample filter exit, UTIL0038 (see page 69), is supplied in source form. It

illustrates the use of the USER facility to provide a simple encryption/decryption

facility.

Sample FILTER Exit: UTIL0037

To illustrate the FILTER facility, a sample filter exit program, UTIL0037, is

supplied (in source form as well as in compiled form).

This section explains how UTIL0037 is used by filter records.

UTIL0037 Processing

UTIL0037 filters records by referring to a control table, which is built at OPEN

time from a sequential file of control statements.

This file of control statements is named (ddname) by the PARM option of the

FILTER operand.

Example

//OUTFILE DD SUBSYS=(NMSS,WTO,

// 'FILTER=(UTIL0037,FILTCTL)')

//*

//FILTCTL DD DSN=MY.FILTER.CONTROL,DISP=SHR

Each record to be filtered is actioned against the filter table and accepted or

rejected based on strings in the record.

If there are syntax errors in the control file, the attempted OPEN fails and an

error message is generated that includes the line in error.

Sample FILTER Exit: UTIL0037

66 SOLVE Subsystem Interface Guide

Control File Format

The control file for UTIL0037 is in the following format:

■ The control file must be F or FB, LRECL=80. It can be a sequential file or a

PDS member (specify the member name on the DD statement for the control

file).

■ Only columns 1 through 72 of the input record are examined.

■ Blank lines are ignored.

■ Lines with an asterisk (*) as the first non-blank character are ignored and

thus can be used as comments.

■ All other lines must contain valid control statements.

Filter Processing

UTIL0037 processes a record to be filtered as follows:

■ The record is processed against each statement in the control file in turn.

■ Some statements can cause the record to be immediately accepted or

rejected. In this case, a return to DD SUBSYS is made with the appropriate

return code (0 for ACCEPT, 4 for REJECT).

■ If the record reaches the bottom of the control file, then it is implicitly

accepted.

Sample FILTER Exit: UTIL0037

Chapter 4: SSI DD SUBSYS Support 67

Control Statements

In the following descriptions, string is a character string containing any

characters (including unprintable ones), delimited by a pair of one of the

following characters: /, \, ¢, and |.

Whatever opening delimiter is used, it cannot appear in the string and must be

the closing delimiter. The closing delimiter must be followed by a blank.

The following control statements are recognized:

BASE n

Provides a way to set a logical column number.

By default column 1, as used by the other statements, corresponds to the

first byte of a record, unless the file is open for output and has control

characters. In this case, column 2 is used as logical column 1.

By specifying BASE n, you nominate which column (n) of the record is to be

treated as column 1.

Note: Because the other statements do not permit a column number less

than 1, you cannot back up to columns before the logical column set by the

BASE statement.

The BASE statement affects any following statements, and you can have

several BASE statements in the control file.

There is a default BASE 1 or BASE 2 statement assumed at the start of the

control file (the position depends on the presence of a control character).

Sample FILTER Exit: UTIL0037

68 SOLVE Subsystem Interface Guide

REJECT string [scol [ecol]]

ACCEPT string [scol [ecol]]

SELECT string [scol [ecol]]

Describes a set of records that are to be rejected, accepted, or selected by

filtering.

For REJECT, if the match criteria is satisfied, then the current record is

immediately rejected by filtering.

For ACCEPT, if the match criteria is satisfied, then the current record is

immediately accepted by filtering.

For SELECT, if the match criteria is not satisfied, then the current record is

immediately selected by filtering.

If neither scol or ecol are provided, then the string must match in the current

logical column 1 (see the description for the control statement BASE n in this

table).

If just scol is provided, then it is either the starting logical column for the

string to be in (a number from 1 to 32760), or it can be an asterisk, meaning

anywhere in the input record (from logical column 1 onward).

If ecol is provided, it sets a logical column range for the string to occur in.

ecol cannot be specified if scol is an asterisk. ecol can be either a number

(greater than or equal to scol plus the length of the string minus 1) or an

asterisk, meaning anywhere from scol to the end of the record. Note that ecol

sets the ending column position for the end of the string. So ACCEPT /XYZZY/

10 20 says search for 'XYZZY' starting in columns 10, 11, 12, 13, 14, and 15.

REJECT *

ACCEPT *

SELECT *

Provides a way of altering the default action at the bottom of the table. By

default, a record that reaches the bottom of the table is accepted because it

has passed the filtering process. However, you may want to reject all records

that pass the filtering process.

Specifying ACCEPT, REJECT, or SELECT with an asterisk instead of a string

means: match everything and perform the action.

By default, an ACCEPT * is generated. However, a REJECT * at the end of the

table discards (rejects) all records that get that far. Do not code any other

statements after a REJECT *, SELECT *, or ACCEPT *, because they will

never be actioned.

Sample USER Exit: UTIL0038

Chapter 4: SSI DD SUBSYS Support 69

Sample Filter Table

The following sample filter table illustrates how to use the statements:

* SAMPLE FILTER TABLE FOR UTIL0037

*

* FILTER OUTPUT FROM IEBCOPY TO SHOW ERROR MSGS ONLY.

*

*

* NOTE THAT THIS IS FOR A PRINT FILE. WE USE THE DEFAULT BASE WHICH

* MEANS THAT COLUMN 2 (AFTER CTL CHATS) IS LOGICAL COLUMN 1.

*

*

* REJECT PAGE HEADERS AND STATEMENT ECHOES (BLANK COL 1)

*

REJECT / PAGE / 110

REJECT / / 1

*

* SELECT END-OF-JOB MSG

*

ACCEPT /IEB147I/

* SELECT ANY E MSGS (3 OR 4 DIGIT NUMBERS)

ACCEPT /E/ 7

ACCEPT /E/ 8

* REJECT THE REST

REJECT *

Sample USER Exit: UTIL0038

To illustrate the USERx facility, a sample user exit program, UTIL0038, is

supplied (in source form as well as compiled).

This section discusses the use of UTIL0038 (as supplied) to encrypt and decrypt

data.

UTIL0038 Processing

UTIL0038 processes in two modes, depending on whether it is being used for

input (USERI), or output (USERO). If called by USER (not USERI or USERO), the

attempted OPEN fails.

Sample USER Exit: UTIL0038

70 SOLVE Subsystem Interface Guide

UTIL0038 USERI Processing

When being used to process input, UTIL0038 reads from a data set (the ddname

supplied in the PARM operand), decrypts records, and provides them to the

application as input.

The ddname named on the PARM operand must reference a data set that was

written as an output file by some other invocation of UTIL0038.

The DCB attributes for the data set that UTIL0038 reads are RECFM=VBS,

LRECL=32760, BLKSIZE=6233. These are the same attributes that it writes.

The DCB attributes for the DD SUBSYS data set are irrelevant. However, if

records of an incorrect length are returned, I/O errors result.

UTIL0038 USERO Processing

When used to process output, UTIL0038 writes to a data set (the ddname

supplied as the value for the PARM operand), encrypting the written records (that

is, those provided by the application as output).

The ddname supplied as the value for the PARM operand must reference a data

set. The DCB attributes of this data set are forced to RECFM=VBS,

LRECL=32760, BLKSIZE=6233.

The DCB attributes for the DD SUBSYS data set are irrelevant. UTIL0038 writes

variable length records to its output file.

UTIL0038 Encryption

The encryption logic used is very simple and is only supplied to illustrate what is

possible.

Encryption is to simply XOR (exclusive OR) the record against a table that

contains the values X‘FF’ down to X‘00’. This operation is reversible by simply

redoing the XOR.

Note: This encryption technique is not foolproof. Do not attempt to use this

program to provide data security.

Examining the source of UTIL0038 shows how to easily write USERI or USERO

programs. It illustrates how to write the exit to be reentrant, how to use the

various parameters supplied, how to return OPEN errors, and so on.

Chapter 5: Non-VTAM Terminal Support 71

Chapter 5: Non-VTAM Terminal Support

This section contains the following topics:

Overview (see page 71)

Implement Non-VTAM Terminal Support by Using a Local Terminal (see page 71)

Use a Non-VTAM Terminal (see page 76)

Implement Non-VTAM Terminal Support by Using Telnet (see page 79)

Connect to a Region by Using Telnet (see page 79)

Overview

There are times when you want to be able to use terminals to communicate with

regions while VTAM is not available. For example, during system IPL, you might

want to log on and run automation in full-screen mode without waiting for VTAM

to become active.

A region can provide non-VTAM support in the following ways:

■ By using a local terminal as a non-VTAM terminal

■ By using Telnet

Implement Non-VTAM Terminal Support by Using a Local

Terminal

Non-VTAM terminal support is implemented by using the SSI access method.

This method supports communication between a local terminal attached to a

program called NMSSI (SOLVE SSI) and up to 16 regions.

Implement Non-VTAM Terminal Support by Using a Local Terminal

72 SOLVE Subsystem Interface Guide

Sysplex Support

In a sysplex environment, you can use the cross-system coupling facility (XCF) to

enable a local terminal to access a region on another system. The following

illustration shows an example:

To register the SSI region to the XCF component, add the XCF=YES parameter in

the SSISYSIN or SSIPARMS (if used) member.

Enable Terminal Support in SSI

An SSI startup parameter, TERMINALS={YES|NO}, is used to specify whether

the NMSSI program is to provide support for non-VTAM terminals.

If TERMINALS=YES is specified, communications for terminals are initialized

when the NMSSI program is initialized.

The TERMINALS parameter is specified in the SSISYSIN or SSIPARMS (if used)

member. If you want to implement non-VTAM terminal support you need to set

this parameter to YES.

Note: If you are running multiple SSI regions on a single system, only one of

them may be set up for non-VTAM terminals.

You need to review other startup parameters for the SSI (in particular, the SSID

parameter).

Implement Non-VTAM Terminal Support by Using a Local Terminal

Chapter 5: Non-VTAM Terminal Support 73

Specify Accessible Regions

To specify the regions that can be accessed by the terminals attached to an SSI

region, add TERMACCESS parameters to the SSISYSIN or SSIPARMS (if used)

member.

You can specify up to 16 TERMACCESS parameter statements.

Enable Automatic Logon to a Region

The automatic logon parameter for a non-VTAM terminal is set in the SSI

parameter group.

When automatic logon is enabled for a terminal, the terminal is automatically

logged on to the region specified in the first TERMACCESS parameter statement

only.

TERMACCESS Parameter

A TERMACCESS parameter specifies the region that a non-VTAM terminal can

access and the function key that is used to access the region.

TERMACCESS=(PFnn,region-id,description)

PFnn

Specifies the function key that is used to access the region-id region.

nn must be in the ranges 5 through 12 and 17 through 24.

region-id

Specifies the ID of a region that a terminal can access. If you registered the

SSI regions with the XCF component in a sysplex environment, the region

does not need to be on the same system.

region-id is specified in the SYSTEMID parameter group. The default is the

value specified for the PRI= JCL parameter in the RUNSYSIN member.

description

Specifies a short description to identify the region that the function key

accesses. This description is displayed on a terminal function key menu.

To represent a blank character, use an underscore.

Limits: 1 to 20 characters; quoted strings not supported

Example

The following example enables you to press PF11 to access the PROD region from

a non-VTAM terminal.

TERMACCESS=(PF11,PROD,REGION_1)

Implement Non-VTAM Terminal Support by Using a Local Terminal

74 SOLVE Subsystem Interface Guide

Attach and Detach Terminals

The ATTACH and DETACH commands can be used to attach terminals to and

detach terminals from NMSSI.

When you use these commands, you need to specify the device address of the

terminal you want to attach or detach. NMSSI uses this address to dynamically

allocate and deallocate the device.

Example: Attach a Device

The following example attaches device 4DF:

ATTACH 4DF

Example: Attach a Device and Notify Region

The following example attaches device 4DF and assigns it the name TERMNAME.

The accessed region is notified of the attachment, and the user’s details are

specified.

ATTACH 4DF NAME=TERMNAME AUTOLOG=YES DATA=USERID PASSWORD OPT

Example: Detach a Device

The following example detaches the device 4DF:

DETACH 4DF

Example: Detach All Devices

The following example detaches all devices:

DETACH ALL

Implement Non-VTAM Terminal Support by Using a Local Terminal

Chapter 5: Non-VTAM Terminal Support 75

Define Terminal Names

Non-VTAM terminal support allows both 3-character and 4-character terminal

addresses.

NMSSI assigns an eight-character symbolic name to a terminal that consists of a

1 to 5-byte prefix followed by the terminal device address.

If a terminal has a 4-character address and the first character is not zero (for

example, 1FFF), you must limit the length of the prefix to four characters.

The symbolic name prefix defaults to $LOCL—you can, however, specify a

different prefix using the TPREFIX operand in NMSSI startup parameters.

You can also specify a terminal name through the NAME operand of the ATTACH

command. This name overrides the name specified in the TPREFIX operand for

the terminal being attached.

Activate the SSI

You need to activate the SSI before you can use the non-VTAM terminal support

facility.

Display Attached Terminals

The SHOW SSITERMS command displays terminals attached to NMSSI.

Control Non-VTAM Terminals Through Customization Parameters

Terminals that are attached to the region through NMSSI can also be controlled

through the SSI parameter group. This parameter group provides a panel-driven

interface for controlling non-VTAM terminal access (press F1 (Help) on the SSI

Initialization Parameters panel for additional information). If NMSSI stops and

restarts, you need to reapply the parameter group.

To avoid having to reapply the parameter group (that is, to ensure that the

terminals always remain attached), you can update the NMSSI parameters by

specifying CMD=‘ATTACH …’ for each terminal.

Use a Non-VTAM Terminal

76 SOLVE Subsystem Interface Guide

Remote Device System (RDS) Considerations

When using RDS to control allocations of devices to multiple systems, you need

to modify the buffer size on the terminal device definition. The buffer size must

be at least 65. For example, to attach device 04B to the NMSSI, specify the

following:

DEFINE DEV ADD=04B, DEVTYPE=3779, BUF=65

Use a Non-VTAM Terminal

A terminal that is connected through NMSSI initially displays a banner page.

This screen displays the NMSSI subsystem ID, the system name, the terminal

name, and the following available function keys:

ENTER (Menu)

Displays the NMSSI menu that lists the function keys for accessing the

defined regions.

F1 and F13 (Help)

Displays online help for the non-VTAM terminal facility.

F3, F4, F15, and F16 (Detach)

Detaches the terminal from NMSSI. Use the ATTACH command to reconnect

the terminal to NMSSI.

F5 through F12 and F17 through F24 (Solve)

Passes the terminal to the appropriate region for logon if a TERMACCESS

parameter is defined for that function key. The terminal bypasses EASINET if

it is active and displays the logon screen. At this point the terminal functions

as if it were connected through VTAM.

Use a Non-VTAM Terminal

Chapter 5: Non-VTAM Terminal Support 77

Access a Defined Region

You can access a defined region by pressing the appropriate function key from

the NMSSI logo screen. You can also press ENTER to display the NMSSI menu

that shows which function keys are defined and press the appropriate function

key to access the region.

The NMSSI logo screen is displayed only when a terminal is first connected to

NMSSI. Thereafter, the NMSSI menu is your NMSSI interface, for example:

 SOLV MVS1 *** NMSSI MENU *** Terminal: $LOCL4DF

 Pfk Nmid Sysname Status Description
 PF05 PROD0001 MVS1 IN-SESSION REGION_0001 *OUTPUT*
 PF06 PROD0002 MVS2 STARTING REGION_0002
 PF07 - - - -
 PF08 - - - -
 PH09 - - - -
 PH10 - - - -
 PF11 PROD1001 MVS1 IN-SESSION REGION_1001 CURRENT
 PF12 PROD1002 MVS2 INACTIVE REGION_1002
 PF17 - - - -
 PF18 - - - -
 PF19 - - - -
 PF20 - - - -
 PF21 - - - -
 PF22 - - - -
 PF23 - - - -
 PF24 - - - -

 F1/13=Help F3/15=Logoff Current F4/16=Detach Enter/Sysreq=Current

Use the SYSREQ Key

Use the SYSREQ key to switch between a region and the NMSSI menu. By

returning to the NMSSI menu, you can establish multiple sessions and access

them any time by pressing the appropriate function key.

Terminate a Session

Press F3 (Logoff Current) to terminate the session to the last accessed region.

To terminate another region from the NMSSI menu

1. Press the appropriate function key to access the region to make it current.

2. Press SYSREQ to return to the menu.

3. Press F3 to terminate the session.

Use a Non-VTAM Terminal

78 SOLVE Subsystem Interface Guide

Session Status

Sessions displayed on the NMSSI menu can have the following statuses:

CONNECTED

Indicates that the region is connected to an SSI region.

INACTIVE

Indicates that the region is not connected to an SSI region.

IN-SESSION

Indicates that the terminal has an active session with the region.

STARTING

Indicates that the terminal is establishing a session with the region.

Implement Non-VTAM Terminal Support by Using Telnet

Chapter 5: Non-VTAM Terminal Support 79

Implement Non-VTAM Terminal Support by Using Telnet

You can customize the TCP/IP interface to support Telnet connections.

To enable Telnet access

1. Enter the /PARMS shortcut at the prompt.

The region initialization parameter groups are listed.

2. Enter F TELNETSRVR to find the TELNETSRVR parameter group.

3. Enter U beside the parameter group, and complete the fields as follows:

Allow TELNET Connections?

Enter Yes.

Port 1

Enter Shared to use the port number specified in the Inbound

Connections Port field of the SOCKETS parameter group.

Note: If Shared is not suitable (for example, to permit or prevent access

through a firewall), you can specify up to five port numbers.

Leave the other fields at their default values.

4. Press F6 (Action).

Telnet access is enabled.

5. Press F3 (File).

Parameter values are saved so that Telnet access is enabled during region

initialization.

After you have enabled Telnet access, users can use Telnet to access the region

by using the specified port numbers.

Note: For information about the parameters that you can use to customize

Telnet access, see the online help.

Connect to a Region by Using Telnet

To access a region that supports Telnet connections, use the IP address and port

number that have been set up.

To get the address and port number, enter SHOW TCPIP in the region to which

you plan to connect.

Index 81

Index

A

API (application program interface)

FILTER exit, for • 50

USER facility, for • 56

attaching a terminal to NMSSI • 74

automatic logon, non-VTAM terminal support •

73

C

CNMNETV • 29

commands

for PPI • 31

for SOLVE SSI • 22

commands, SOLVE SSI

ATTACH and DETACH • 74

SHOW PPIUSERS • 31

SHOW SSIEPS • 23

SHOW SSISTATS • 23, 31

SHOW SSIUSERS • 23

SMF • 24

SSI SIGNOFF • 23

SSI STATUS • 23

SSI STOP • 23

STACK REFRESH • 28

configuration

multiple instances • 13

contacting technical support • iii

customer support, contacting • iii

D

DD SUBSYS

FILTER Exit API • 50

implementing • 36

overview • 33

supported functions • 38

USERx facilities • 48

using • 37

deployment • 11

E

examples, TERMACCESS definitions • 73

F

FILTER facility • 41

API • 50

exit procedure sample • 65

I

initialization parameters, SOLVE SSI • 17

IPSec

NMI (network management interface) • 19

J

JCL for PPI • 29

M

multiple regions

configure • 12, 13

N

NMSSI Logo Screen Function Keys • 76

NMSSI program • 72

sample screen • 76

TERMACCESS parameters • 73

TERMINALS facility • 72

non-VTAM terminal support

access definitions • 73

automatic logon to region • 73

local terminal • 71

region access • 77

session termination • 77

status • 78

sysplex • 72

SYSREQ key • 77

Telnet • 79

P

Packet Analyzer • 24

initialization parameters • 24

STACK REFRESH command • 28

panels

NMSSI logo • 76

PPI (program-to-program interface)

activating • 31

execute commands • 31

identify the target receiver • 44

implement • 29

JCL • 29

source identifier • 44

82 SOLVE Subsystem Interface Guide

use with SOLVE SSI • 28

PPIRECV • 46

products, supported • 10

R

regions

automatic logon • 73

non-VTAM terminal access • 73, 77

Telnet connections • 79

S

sharing a SOLVE SSI region • 12

SHOW PPIUSERS command • 31

SHOW SSIEPS command • 23

SHOW SSISTATS command • 23, 31

SHOW SSIUSERS command • 23

SOLVE SSI • 9

access method for implementing non-VTAM

terminal support • 71

as common component • 12

common functions • 39

COPY facility • 39

DD SUBSYS support • 34

executing commands • 22

FILTER facility • 41

implement • 11, 17

initialization parameters • 17, 24, 29

Packet Analyzer, and • 24

PPIRECV facility • 46

PPISEND facility • 44

startup parameters • 72

using with PPI • 28

SSI SIGNOFF command • 23

SSI STATUS command • 23

SSI STOP command • 23

SSIDB data set • 9, 11

STACK REFRESH command • 28

status

non-VTAM terminal support sessions • 78

support, contacting • iii

sysplex

non-VTAM terminal support • 72

SYSREQ key • 77

T

technical support, contacting • iii

Telnet

connections • 79

non-VTAM support • 79

TERMACCESS parameter • 73

terminals, non-VTAM

attaching to and detaching from NMSSI • 74

controlling though customization parameter

• 75

defining names • 75

initializing • 72

local • 71

Telnet • 79

U

USER facility

API • 56

exit procedure, sample • 69

V

VTAM

communicating with terminals when

unavailable • 71

W

WTO (write-to-operator)

DD SUBSYS operands • 42

invoke • 38

use • 42

	CA Mainframe Network Management SOLVE Subsystem Interface Guide
	Contents
	1: Introduction
	SOLVE Subsystem Interface
	Products Supported

	2: Implementation
	Deployment
	SOLVE SSI as Common Component
	How You Share a SOLVE SSI Between All Products
	How You Configure a SOLVE SSI for a Product Family

	Multiple Instances of SOLVE SSI on the Same System

	3: Administering the SOLVE SSI
	Initialization Parameters
	Execute SOLVE SSI Commands
	SSI Command Descriptions
	SMF Command Descriptions

	Packet Analyzer and SOLVE SSI
	Packet Analyzer Parameter Descriptions
	STACK REFRESH Command--Refresh Stack Interface Configuration

	Use PPI with SOLVE SSI
	Implement PPI
	PPI Parameter Descriptions
	Activate PPI
	PPI Command Descriptions

	4: SSI DD SUBSYS Support
	DD SUBSYS
	SOLVE SSI DD SUBSYS Support
	Enable DD SUBSYS Support in SOLVE SSI
	Considerations When Stopping the SSI

	Use DD SUBSYS
	Implementation of DD SUBSYS
	Who Can Use DD SUBSYS Facilities?
	DD SUBSYS Syntax
	Supported Function Names
	Common Functions
	COPY Facility
	FILTER Facility

	Carriage Control

	WTO Facility
	WTO DD SUBSYS Operands

	PPISEND Facility
	PPISEND DD SUBSYS Operands

	PPIRECV Facility
	PPIRECV DD SUBSYS Operands

	USER, USERI, and USERO Facilities
	USERx DD SUBSYS Operands

	FILTER Exit API
	APF Authorization
	Abnormal Termination (ABEND)
	Dynamic Allocation
	Calling Details
	Return Codes
	Reentrancy
	Parameter List

	Sample Filter Exit

	USERx Facility API
	APF Authorization
	Abnormal Termination (ABEND)
	Supported I/O Requests
	Dynamic Allocation
	Calling Details
	Return Codes
	Reentrancy
	Parameter List

	Sample USER Program Exit

	Sample FILTER Exit: UTIL0037
	UTIL0037 Processing
	Control File Format
	Filter Processing
	Control Statements
	Sample Filter Table

	Sample USER Exit: UTIL0038
	UTIL0038 Processing
	UTIL0038 USERI Processing
	UTIL0038 USERO Processing
	UTIL0038 Encryption

	5: Non-VTAM Terminal Support
	Overview
	Implement Non-VTAM Terminal Support by Using a Local Terminal
	Sysplex Support
	Enable Terminal Support in SSI
	Specify Accessible Regions
	Enable Automatic Logon to a Region
	TERMACCESS Parameter

	Attach and Detach Terminals
	Define Terminal Names
	Activate the SSI
	Display Attached Terminals
	Control Non-VTAM Terminals Through Customization Parameters
	Remote Device System (RDS) Considerations

	Use a Non-VTAM Terminal
	Access a Defined Region
	Use the SYSREQ Key
	Terminate a Session
	Session Status

	Implement Non-VTAM Terminal Support by Using Telnet
	Connect to a Region by Using Telnet

	Index

